
Chapter 3
Data Interpretation
In this chapter I will discuss the interpretation methods that are common tomost of the data used in this thesis. Descriptions of specialized analyses { e.g., ofa technique that is applicable to only one of the comets { will be discussed in therelevant comet-speci�c chapters.3.1 Philosophy of Thermal ModelingThe energy available to a cometary nucleus comes from the Sun. Internal heating bye.g. radioactive decay is not an important factor owing to the small size of the object.The insolation absorbed by a surface element of the nucleus either is reradiated, ispassed along to adjacent elements, or helps to sublimate ice. Currently the numericalvalue of important factors that heavily in
uence the nucleus' thermal behavior areunknown, though we hope to achieve some understanding with the cornucopia ofspacecraft visits in the coming decade. Detailed models of a cometary nucleus makeestimates of such quantities as the thermal conductivity, the porosity, the heatcapacity, the surface roughness, the shape, the e�ective radius, the composition,the structure of the ice/rock matrix, the emissivity, and the rotation state to tryto match the observed 
ux. Only rarely are any of these quantities actually knownfor a given nucleus a priori; the modeler must simplify the situation to make theproblem tractable.The advent of more sensitive IR instrumentation has led to the acquisition ofbetter datasets, and I have attempted to apply some thermal modeling that goesbeyond the standard simple methods to some of the datasets in this study. Thereare models created by others that are more complex, but in my opinion the directapplication of a very complicated model to a real nucleus about which we know verylittle detail may not really help one understand the basic properties of the nucleusany better than a relatively simple model can.Previous work on understanding the thermal behavior of nuclei has mostly ex-ploited the two popular thermal models for asteroids: the \standard" thermal model(STM), also known as the slow-rotator model (SRM); and the rapid-rotator model(RRM), also known as the isothermal latitude model (ILM) and the fast-rotatormodel (FRM). As the names imply, the STM assumes the asteroid is rotating slow-ly compared to the timescale for the thermal wave to penetrate one thermal skindepth into the nucleus, and the RRM assumes it is rotating much faster than that.
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For example, for objects 1 AU from the Sun, a \slow" rotator would have a rotationperiod of roughly 15 hours, whereas a \fast" rotator would spin in roughly 4 hours.Both models assume the object is spherical. The temperature map of a sphere thatfollows the STM looks like a bull's-eye centered on the subsolar point, the hottestpoint on the object, with the temperature decreasing as the local solar zenith angleincreases. The night side is at absolute zero. For an object following the RRM, thetemperature at any point only depends on the distance from the subsolar point'slatitude, not the longitude. (This is the origin of the \isothermal latitude" name.) Ihave displayed in Fig. 3.1 a schematic, based on a similar �gure made by Lebofskyand Spencer (1989; their Fig. 4), showing typical temperature maps for the twomodels.The STM uses a measured 
ux and assumes values for the bolometric IR emissiv-ity, the optical geometric albedo, the IR phase function, the optical phase integral,and the roughness of the surface (embodied in a factor diminishing or enhancingthe overall observed 
ux). With these quantities, one �nds the e�ective radius. TheRRM uses the measured 
ux and requires values for the bolometric IR emissivity,the optical geometric albedo, the optical phase integral, and the rotation axis di-rection to �nd the e�ective radius. As an aside, if one assumes a pole orientationpointing toward the Sun, then the RRM and the STM yield the same temperaturemap.For this asteroidal model to be applicable to a cometary nucleus, one has to besure that (a) the nucleus is a slow-rotator; (b) it is not very active, or rather, notmuch of the solar input energy is going to sublimating gas instead of heating up therock; and (c) the coma is not providing a secondary source of energy via backwarm-ing, which is only a problem for very active comets like Hale-Bopp. It is not reallynecessary that the cometary nucleus be spherical, which is advantageous since manyare not (Meech 1999), but the output of the STM is then the e�ective radius, notthe radius itself. There is a complication with this, since the radiometric e�ectiveradius does not have to be the same as the geometric e�ective radius: suppose thenucleus were cigar shaped with the long axis pointing toward the Sun. An observerwould measure a relatively small thermal 
ux and derive a small e�ective radius,since most of the cigar would not be signi�cantly warmed by the Sun. Fortunately,observing the thermal 
ux over the course of a rotation period, and if possible at sev-eral points in the orbit, can assuage most fears about this pathological case skewingthe radiometrically-derived size. The uncertainties from other aspects of the model{ e.g., the infrared phase e�ect, and the beaming e�ect, described below { usuallymake the uncertainty in the resulting radius estimate large enough so that it engulfssome of this systematic error anyway. Moreover the uncertainty from extracting thenuclear signal from a coma-laden image increases the error estimate.3.2 The Energy of a NucleusThe STM and RRM model mark the extremes; many objects lie in between. Forcometary nuclei, historically the STM has been used because it has been assumedthat the thermal inertia, �, of nuclei are small; i.e., the nuclei are slow-rotators.The value of � is known only for the Moon and a few other satellites, and Spenceret al. (1989) point out that the value for an asteroid (or cometary nucleus) could
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Figure 3.1: Schematic of contour temperature map for (a) slow- and (b) fast-rota-tors. For each spherical object, the gray-shaded area is unlit by the Sun. In (a),the subsolar point and location of highest temperature is at the dot left-of-center;the temperature decreases toward the terminator in every direction. In (b), I haveassumed that the rotation axis is perpendicular to the object's orbit plane, so thesubsolar latitutde is at the equator. The temperature is a maximum there and fallso� toward the poles. Note that the contours extend beyond the terminator. This�gure is based on Figure 4 of Lebofsky and Spencer (1989).
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be lower since most of these objects are farther from the Sun so the heat capacitycould be lower at the cooler temperatures. Moreover at the lower temperaturesthe radiative heat transport that is so important in the lunar regolith { and whichboosts the e�ective conductivity { is not necessary. On the other hand the thermalinertia could be higher since the small bodies of the Solar System presumably haveless regolith { they simply cannot gravitationally retain it { and the bare rock is amore e�ective conductor. Harris et al. (1998) have claimed that thermal IR dataon some NEAs, incorporating some of modeling done by Spencer (1990), seem toindicate a higher thermal inertia than previously supposed.I have made an attempt to handle the intermediate case between the STMand RRM with a model that is one or two steps farther in complexity. Furtheraugmentation beyond what I describe here should wait until more elaborate datasetshave been collected. As it is I will only apply the model to the Hale-Bopp data,since certain important physical properties of the other comets in this thesis { mostnotably the spin axis direction { are unknown. First I will describe the basic STM,and then the enhancements that I have supplied. A good discussion of the STM isgiven by Lebofsky and Spencer (1989).The energy balance on a facet on the nucleus is:Energy Absorbed = Energy Emitted; (3:1)where for a facet at some latitude �=2�� and longitude � on a spherical nucleusthe l.h.s. is
Energy Absorbed = Z F�(�)4�r2 (1� A(�; �; �))R2 cos z(�; �)d cos �d�d�; (3:2)and the r.h.s. isEnergy Emitted = Z B(�; T (�; �))�(�; �; �)R2d cos �d�d�; (3:3)where F� is the solar speci�c luminosity; r is the comet's heliocentric distance;A is the Bond albedo and is equal to pq, the product of the geometric albedo andthe phase integral; R is the nucleus' radius; z is the zenith angle of the Sun as seenfrom the facet; B is the Planck function; � is the emissivity, which is near unity; andT is the temperature. Since the STM was designed for asteroids, usually A and �are taken to be independent of position, although currently there is no indication ofany large albedo spots on cometary nuclei either. In addition, it is assumed that Ais independent of wavelength in the optical, where most of the Sun's energy is, and� is independent of wavelength in the mid-IR, where most of its thermal output is.This simpli�es the equations toL�4�r2�R2(1� A) cos z(�; �) = �R2�T 4(�; �); (3:4)where L� is the solar luminosity and � is the Stefan-Boltzmann constant. Theresult is a temperature that depends on the one-fourth power of the local solar zen-ith angle, with no dependence on R; only TSS , the subsolar point's temperature,
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is needed to describe the temperature map. By plugging in the temperature mapinto Eq. 3.3 accounting for the observing geometry, one can �nd the value of Rsatisfying what the observer measures with the photometry.There are two added features to the STM that complicate this picture. First,there is an arbitrary constant multiplied to the r.h.s. (Eq 3.3), �, a beaming factor,to account for the fact that the asteroid is actually not a perfect sphere, but hassurface roughness. For example, if at the subsolar point on the asteroid there were acrater, the thermal 
ux coming out of the asteroid would be higher since the surfaceof the asteroid in the crater would be hotter (from backwarming by the walls). Thevalue of � seems to be approximately unity, with a known range for a few asteroidsand satellites of 0:7 to 1:2 (Spencer et al. 1989, Harris 1998). The problem is �is not known a priori, so there is some ambiguity akin to the albedo problem withoptical data. However it is much less signi�cant since the possible range of � onlycovers about a factor of 2, and moreover with 
ux measurements at multiple mid-IRwavelengths it is in principle possible to constrain the value (Harris et al. 1998).The other added feature to the STM is the phase e�ect. Since we hardly everobserve an object at phase angle � of zero, and often � is � 40� when observingnearby comets and NEAs, one needs to know the phase behaviour. One popularmodel is to have the phase e�ect in magnitudes proportional to � itself (Matson1972, Lebofsky et al. 1986). The known range for the proportionality constant is0.005 to 0.017 mag/degree. Another method is to just integrate the amount of lightone sees on the Earth-facing hemisphere. This is akin to using a 12(1 + cos�) phaselaw in the optical regime, except that in the mid-IR each di�erential of area on thesurface is weighted by T 4. There is some evidence (Harris 1998) that this lattermethod describes the phase behavior of asteroids better than the older method, atleast for the large asteroids.The optical data enter the analysis for the determination of the albedo A in Eq3.4, since the optical 
ux from a spherical object is proportional to pR2. The phaseintegral, q, connecting A and p, is roughly known from the optical phase behavior,which has been studied quite a bit more than its IR counterpart. The result is thatthe problem essentially becomes a system of two equations with two unknowns, Rand p. This is the basic method behind the work of Campins et al. (1987), Milliset al. (1988), and A'Hearn et al. (1989) when they made the �rst ground-basedmeasurements of nuclear albedos in the mid-1980s.3.3 The Augmented Thermal ModelFor the augmentation of the model, I have used two basic equations: the con-servation of energy equation, and the one-dimensional heat transport equation, thesimple parabolic partial di�erential equation. Energy conservation is treated withthe input being insolation and the outputs being reradiation, volatile vaporization,and conduction into the subsurface layers. I have not attempted to treat lateralheat transport.Energy conservations dictatesL�4�r2 (1� A) = � Z Z T 4(�; �)�d cos �d�+ �dTdz + L(T )dMdt ; (3:6)
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where � is the thermal conductivity, L(T ) is the latent heat of vaporization, anddM=dt is the gas mass loss rate. Except for comets such as Hyakutake, which hadan extremely active nucleus, the contribution of the third term in that equation willusually be only on the few percent level. For this reason, I have simpli�ed the modelby having the gas emanate uniformly over the nucleus' surface.The heat equation is @T@t = ��c @2T@z2 ; (3:7)where � is the bulk density and c is the heat capacity. The simultaneous solutionof these equations is the basis of my augmented thermal model. The solution is atemperature map from which the expected 
ux is calculated for a given radius size.The continuum between STM and RRM is sampled simply by altering the thermalinertia � = p��c.Spencer et al. (1989) have done much work on the thermophysical behaviorbetween the STM and the RRM. They formulated the constant �, the thermophys-ical parameter, to indicate when the STM, the RRM, or something in between isapplicable, de�ned as � = p��c!=(��T 3SS); (3:8)where ! is just 2� divided by the rotation period. It is basically a comparison ofthe rotation time scale and the timescale for the thermal wave to penetrate one skindepth, where the skin depth l is given by
l = 2! ��c: (3:9)

If � << 1, then STM is applicable, whereas if � >> 1, the RRM is the one to use.For example, if a cometary nucleus at 1 AU from the Sun has a lunar thermal inertia(50 J K�1 m�2 s�1=2), and spins on its axis in 10 hours, then � = 0:2 (since thesubsolar point will have TSS = 390 K). This places it in the slow-rotator regime, butsince 0.2 is of the same order as unity, we would not expect the STM to perfectlydescribe the object's thermal behavior.Another aspect of my augmented model is the ability to handle ellipsoidal nuclei.This introduces yet more parameters into the model, since not only are the axialratios of the nucleus required, but also the rotation state, since the 
ux observedat Earth will now depend on the sub-earth latitude and longitude. Note that theusual observations of nuclei that measure the varying cross section reveal only theprojected axial ratio, not the actual ones, unless the data can be combined withmeasurements at other points in the comet's orbit. I will show an example of thisin Chapter 5. Brown (1985) has studied the e�ects of ellipticity on the output ofthe STM, and shown that slight asphericity does not make much di�erence in theuse of the STM, but { as with the cigar-shaped nucleus example that I previouslymentioned { serious systematic problems can exist if the objects are signi�cantlyelongated.Since the augmented model explicitly calculates the temperature at several lay-ers within the nucleus, the model is able to handle my radio data, which the STM is
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unable to do. Our microwave observations do not sample the surface temperature,but rather the temperature several \skin depths" below the surface. The subsurfacelayer that is sampled could be a few wavelengths deep (for relatively rocky material)or a few tens of wavelengths deep (for icier material) (de Pater et al. 1985). Regard-less of the exact depth, it is clear that the microwave data show a lower temperaturethan at the surface. Here we see a case where the uncertain nuclear porosity, com-position, and conductivity have a very direct e�ect on the interpretation of data.3.4 Rotation of the NucleusThe rotation of cometary nuclei has been studied for the past few decades, asmentioned in Chapter 1. However for only a handful of nuclei are there arguablywell-determined rotation periods. A thorough review has been written by Belton(1991), and Meech (1999) has added more information from the 1990s. It is likelythat some cometary nuclei are in complex rotation, complicating one's derivationof the rotation state via observations, and it is telling that there is still uncertaintyin the rotation state of 1P/Halley's nucleus, one of the most deeply studied cometsin all history. In this section I will give a brief description of the easy methods todetermine a periodicity in the rotation state of the nucleus, but there is the caveatthat it is not the only periodicity.There are two main methods I employ for determining periodicity, one based onthe morphology of the near-nuclear coma, the other based on the photometry of thecomet's photocenter. I did not use the zero-date method used by Whipple (1982)because the other two methods are more reliable, as Whipple himself has stated.The �rst method, used for Comet Hyakutake and Hale-Bopp, requires takingimages over a long enough time baseline to be able to match up when a particularfeature in the dust coma { e.g., a jet or an envelope { returns to the same orientation.The time between these witnessed events is an integer multiple of the rotation period.There are pitfalls to this method: there is a basic assumption that an active area onthe nucleus that produces the coma feature when it is �rst seen will stay active longenough for the observer to witness it later. Moreover, even if it does stay active, itmay not be easy to tell when that particular feature is back in view: e.g., one couldbe fooled if there is another similar-looking jet in the coma. Implicit in the use of thismethod is that the comet itself does not change signi�cantly during the observinginterval. For example determining the periodicity could become problematical if,during the observing interval, the comet goes into outburst or splits.The second method, which was also used on comet Hyakutake and on cometEncke, involves measuring the photometry over a long enough continuous time in-terval to watch the variation in brightness. In principle one could do this with thepost-processed images, where the coma has been removed leaving just the light ofthe nucleus, but this has not been possible for any of the comets in this study. Thismethod measures the variation due to the changing cross section of the nucleusplus whatever variation is due to the coma. Fortunately for the two comets it wasnot di�cult to tell which component was both dominating the 
ux value and thevariation. The data set for this method is a light curve, a time-series of the 
ux.The extraction of a period from these data is a non-trivial problem. For the�rst method, at the most basic level one matches images by eye, although for good
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temporal sampling cross-correlation methods may be possible. When employing thesecond method, common simple algorithms that are used in the cometary sciencecommunity (as well as other �elds of astronomy, e.g., variable star research) aredescribed by Stellingwerf (1978) and Dworetsky (1983); these involve trial-and-errorof many potential periods, minimizing the length of a string that connects the timeseries photometry in a phased light curve plot. An advantage is that the algorithmis perfectly able to deal with data sampled at a non-periodic rate, and also it isnot beholden to any assumed shape of the light curve, sinusoidal or otherwise. Arelated method is to just take the Fourier transform { i.e., get a power spectrum {of the time-series, and �nd the most important frequency. Since the mathematicalprocess of transforming can introduce extra noise into the data, this method worksbest when there are many points to the light curve.One signi�cant problem with the morphological and photometric methods is thatan observer usually does not have perfect temporal coverage of the entire rotationalphase. An observing night often just does not last long enough to watch a nucleuscycle through one complete rotation. Stringing observations together over severalnights helps alleviate this problem, but it is hardly ever completely eradicated:there are usually aliases to the best choice of periodicity P that one �nds for theparticular observing run, aliases with values like 32P or 12P , i.e., small whole-numberratios multiplying P . In general the longer the baseline over which one observes,the better one can constrain the period.
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