
   

Collisions between Collisions between 
electrons and molecules,electrons and molecules,

photon-assisted photon-assisted 
collisionscollisions



   

Photodetachment of an Photodetachment of an 
electron from a negative electron from a negative 

molecular ion,molecular ion,
radiative electron attachmentradiative electron attachment



   

Motivation: negative ions in the Motivation: negative ions in the 
interstellar medium (ISM)interstellar medium (ISM)

In 1981 E. Herbst suggested that large polyatomic 
molecules may form negative ions by the process of 
radiative attachment.
6 negative molecular ions have been recently found 
in interstellar clouds: C4H-, C6H-, C8H- , CN-, C3N

-, C5N
- .

The proposed mechanism of formation of CnH- and 
CnN- in the ISM is radiative electron attachment 
(REA):

 CnH + e-  C→ nH- + ħ,  CnN + e-  C→ nN- + ħ



   

Quantum-mechanical pictureQuantum-mechanical picture



   

Radiative electron attachmentRadiative electron attachment
The Einstein coefficient for spontaneous emission of a photon 
from an electronic continuum state with incident-electron 
energy E into a bound state |f>:

with ħ=Ei+A , A is the electron affinity.

The final state is

Cross-section for the radiative attachment is then obtained by 
dividing the Einstein coefficient with the density of electron 
current in the incident wave. 



   

Initial state Initial state ||ii>>
 The scattering state of the e--M system behaves at large 
distances r between e- and M as

    is a wave function of the target molecule

Aaa' is the scattering amplitude in the laboratory frame. 



   

Laboratory and molecular reference Laboratory and molecular reference 
framesframes

 The form (LF)

is not adapted for theoretical calculations. 
In theoretical calculations of electron-molecule scattering, one uses 
the molecular reference frame (MF) and partial waves.
One needs to represent the wave function above in the molecular 
frame.
One starts from the formula of decomposition of the plane-wave into 
spherical harmonics

When kvjr is large

jl( x)→
1
x
sin (x− l π

2 )= i
2 x

(e− i( kx−l π/2)−ei (kx−l π /2))



   

Transformation between LF and MFTransformation between LF and MF
The function

is rewritten in terms of partial waves 
(spherical harmonics) as

jl( x)→
1
x
sin (x− l π

2 )= i
2 x

(e− i( kx−l π/2 )−ei (kx−l π /2))



   

Transformation between LF and MFTransformation between LF and MF
The function

is rewritten in MF as



   

The wave function in the form The wave function in the form 
suitable for ab initio calculationsuitable for ab initio calculation

The initial function 

is represented in terms of quantities calculated numerically (ab initio)



   

Transition dipole momentsTransition dipole moments

d⃗=∑
i

e r⃗ i



   

REA cross sectionREA cross section
The scattering state |i> is expanded in the basis of partial 
waves and transformed into the molecular frame.
In the molecular frame, the scattering wave function is 
obtained using  the complex Kohn method or the UK R-matrix 
code. 
The final expression for the REA cross section in the form 
suitable for calculations is



   

Transition dipole moments Transition dipole moments 
as a function of energy and geometryas a function of energy and geometry



   

REA cross sectionsREA cross sections



   

REA cross sectionsREA cross sections



   

PhotodetachmentPhotodetachment
There is no experimental data on radiative attachment 
to the CnH and CnN molecules. But the calculated 
transition dipole moments can be used to compute 
photodetachment cross sections, which could be 
compared with experimental data recently obtained.
If the wave function of the detached electron is 
normalized to energy 

 the photodetachment cross section is

∫ϕd (r )ϕd ' (r)r
2dr sin θdθd ϕ=δ(E−E ' )

σPD=
4 π2

ω
c

|⟨ f |p⃗⋅⃗d|i ⟩|
2

d⃗=∑
i

e r⃗ ipolarization of 
the laser field



   

Initial and final statesInitial and final states
We assume linear polarization along z-axis in LF 

The photodetachment cross

with the initial state

and the final state

                                                                                                   product of the 
electronic function  of 
CN and the wave 
function of the 
detached electron

p⃗=(0,0,1)

σPD=
4 π2

ω
c

|⟨ f |p⃗⋅⃗d|i ⟩|
2
=

4 π2
ω

c |⟨ f |d z̄|i ⟩|
2

d⃗ z̄=∑
i

e z⃗i



   

LF-MF transformation (again)LF-MF transformation (again)
Because the electronic wave function is calculated in MF and 
the photon is absorbed in LF, we need to bring all factors in 
the cross section formula to the same frame. I use MF.

                                                                                                   

Wigner function 
depending on Euler 
angles 

σPD=
4 π2

ω
c |⟨ f |d z̄|i ⟩|

2



   

Some calculations involving Some calculations involving 
quantum angular momentum quantum angular momentum 

In the formula

                                                                                                   



   

Some calculations involving Some calculations involving 
quantum angular momentum quantum angular momentum 

The cross section

should be averaged over possible initial states, which cannot 
be distinguished in the experiment.
and summed over all possible final states                                        
                                                         



   

Approximations made in the Approximations made in the 
derivationderivation

The electronic wave function of the outgoing electron is 
assumed to be in one channel. Therefore, all resonances are 
ignored.
do(E) is assumed to be calculated at a fixed geometry of the 
molecule.                                                                                        



   

If anions are in a thermal equilibrium at a temperature T, 
excited rotational states with J>0 and energies EJ=BJ(J+1), 
could be populated.
The relative population is

where N is such that

Therefore, the number of PD events per unit time is  

The role of temperatureThe role of temperature

∑
J

w J ,T=1

wJ ,T=N e
−

EJ

kT (2 J+1)

wJ ,T=
e
−

EJ

kT (2 J+1)

∑
J

e
−

E J

kT (2 J+1)

nPD∼∑
j , J

w J ,T σPD( j←J )

d 0 (E)=C(Ekin)
p



   

CNCN-- photodetachment cross section photodetachment cross section
Rotational and vibrational structure is neglected



   

Vibrational modes of the neutral molecules and the 
corresponding anions are similar, but not the same.

Franck-Condon factor <vf|vi
->2 is 0.98 for CN/CN-, 0.79 for 

C3N/C3N
- , 0.61 for C5N/C5N

-. 

PD cross sections for CPD cross sections for C
33NN-- and C and C

55NN--

1 shape 
resonances



   

CC22HH-- photodetachment cross section photodetachment cross section



   

CC44HH-- photodetachment cross section photodetachment cross section



   

How to deal with e-ion How to deal with e-ion 
collisionscollisions



   

Quantum defect: bound statesQuantum defect: bound states
Hydrogen atom:

Other atoms:

 is the quantum defect, it 
depends on l.

En=−( e2

4π ϵ0 )
2 me

2 ℏ2n2
=−

1

2n2
(a.u.)

∮p (r )dr=2π ℏ(n+1/2)

En=−
1

2(n−μ)2
(a.u.)

1
2π ℏ

∮dr √2m(En−1/r )+μ=n+1/2

1
2π ℏ

∮dr √2m(En−1/r )=n+1/2



   

QD: continuum statesQD: continuum states

Hydrogen atom, WKB 
solution:

Other atoms:

f ± (r )=( 1
πk(r ) )

1 /2

exp(±i∫a

r
k(r ')dr ') ,

k(r )=√2E+2/r

( 1
πk(r ) )

1/2

exp(±i [∫a

r
k(r ')dr '+πμ ])

Quantum defect determines the bound and continuum 
wave functions

f 1
±→

1

√π k1
r± i /k 1exp(±ik 1r±i η)



   

How to obtain quantum defectHow to obtain quantum defect
One needs to measure or  
calculate ion energies E+ and 
energies of Rydberg states 
En ,n=1,2,3..

The ion could a molecular ion 
(for example H2

+).

For a diatomic molecule is a 
function of the internuclear 
distance R: (R)

μ=n−
1

√2(E+−En)



   

If the ion could be in two different If the ion could be in two different 
quantum states?quantum states?

Different quantum 
states of the ion.

For example, a 
molecular ion could be 
in different rotational 
or/and vibration states



   

Two quantum states: Two quantum states: 
continuum wave  functionscontinuum wave  functions

If the entrance channel is 1

More generally:

Sii' is the probability amplitude, 
describing the scattering of 
the electron from channel j' 
to the channel j.

M11=f 1
−−f 1

+S11 ;

M21=−f 2
+S21

M jj '=f j
−δ jj '−f j

+S jj '



   

From From SS((RR) to ) to SSv'vv'v
 The above procedure allows us 

to find (R) and construct S(R).

 But the molecular target is 
characterized by a vibrational 
quantum number v, not R. 

 Sv'v is needed rather than S(R)





   

Vibrational frame transformationVibrational frame transformation
 The state of the target is unchanged while electron 

moves from infinity to r1. 

 The change in the target state takes place only at r<r0 
and is described by  S(R).

 Therefore, the total S-matrix for motion from infinity 
(and back to infinity) is

 Sv 'v=∑
R ',R

⟨χv '|R' ⟩ ⟨R'|S(R)|R⟩ ⟨R|χv ⟩=∑
R

⟨χv '|R ⟩ ⟨R|S(R)|R⟩ ⟨R|χv ⟩

Sv 'v=∫χv '
∗
(R)S(R)χv (R)dR



   

Some channels open, others are closedSome channels open, others are closed
S must be modified, since only one channel is open.

If S is partitioned  as

Then, the new S-matrix

This matrix is able to describe a very complicated spectra 
with hundreds of overlapping of Rydberg resonances

f 1
±→

1

√π k1
r± i /k 1exp(±ik 1r±i η)

f ±→
1

√2π κ2
e± iπ /κ2 (D−1r−1 /κ2eκ2 r ∓ iDr1 /κ2e−κ 2r )

M jj '=f j
−δ jj '−f j

+S jj '

S=(Soo Soc

Sco Scc
)

Sphys=Soo−Soc (Scc−e
−2π i / κ )

−1
Sco



   

Example: vibrational excitation of Example: vibrational excitation of 
HeHHeH+ + by an electron impactby an electron impact

We need to construct the scattering matrix for the 
process



   

Vibrational wave functionsVibrational wave functions

Vibrational wave functions of the target ion HeH+.



   

AccuracyAccuracy

The vibrational frequencies ∆
v
 = E

v+1
 − E

v+1
 for transitions v  → v+1 

and rotational constants B
v
 obtained in the present study and 

compared with previous calculations. All values are in cm−1 .



   

What fixed-geometry S-matrix can tellWhat fixed-geometry S-matrix can tell



   

Cross sectionsCross sections
Cross sections of vibrational (de-)excitation from the vibrational 
level v=3 to several other levels v.



   

Thermally-averaged rate constantsThermally-averaged rate constants
For an environment at a thermal equilibrium, the rate constant is 
more appropriate to use than the cross section.



   

Example: Photoionization of HExample: Photoionization of H
33

**

Process of photoionization:

H3 (vi , Ji) + ħ  H3 (vf , Jf)  H3+ (v+, J+)+ e-

Several photoionization experiments with H3 molecule

Experimental spectra display a rich structure.

Theory question: can we interpret the experimental 
photoionization spectra?



   

Main steps of the theoretical approachMain steps of the theoretical approach
The scattering matrix S for the process

H3
+(v+, J+) + e-(Ylm) H3

+(v+', J+') + e-(Yl'm’).

is constructed

Photoionization is considered as a two-step process: 

1) laser-assisted transition (vi,Ji)  (vf,Jf); 

2) ionization

Step 1) is described by dipole matrix elements

Step 2) is regarded as a half collision; represented by S matrix.

Quantum defect theory (QDT) allows us to combine calculated 
scattering matrix and dipole transition matrix elements to 
obtain a theoretical spectrum.



   

Some formulasSome formulas

 Total wave function of the ion

Vibrational and rotational frame transformations are 
applied. At large distances, the H3 functions are

At short distances (where the S matrix is known)

The rotational transformation is 



   

Some formulasSome formulas
The transformed scattering matrix is

The e+ion function is

The photoionization cross section ~



   

Some resultsSome results
Photoionization experiments 
by Bordas et al. (PRA 1991) 
and by Mistrik et al. (PRA 
2000)

Theoretical spectra (with no 
adjustable parameters) are in 
good agreement with the 
experiments.



   

Photodetachment Photodetachment 
threshold lawthreshold law



   

Photodetachment cross sectionPhotodetachment cross section

σPD=
4 π2

ω
c |⟨ f |d z̄|i ⟩|

2



   

Electronic wave function of the Electronic wave function of the 
final statefinal state

σPD=
4 π2

ω
c |⟨ f |d z̄|i ⟩|

2 The final state |f> of the 
electronic continuum is energy 
normalized

Energy-normalized electronic function (the radial part only)



   

Low-energy collisionsLow-energy collisions
For small energies, the wave function near the origin is

with

al  are the scattering lengths.

|f ⟩= √2μk l+1 /2

2l+1
ℏ Γ (l+3 /2 ) [r l+1

+ tan δl

22 l+1
Γ ( l+1/2)Γ (l+3 /2 )

π k 2 l+1rl ]



   

Wigner lawWigner law

|f ⟩= √2μk l+1 /2

2l+1
ℏ Γ (l+3 /2 ) [r l+1

+ tan δl

22 l+1
Γ ( l+1/2)Γ (l+3 /2 )

π k2 l+1rl ]

σPD
(l )
=

4 π2
ω

c |⟨ f |d z̄|i ⟩|
2
∼k2 l+1

∼(ℏω−Ethres)
l+1 /2

When k  0→



   

Wigner lawWigner law
σPD=

4 π2
ω

c |⟨ f |d z̄|i ⟩|
2
∼k2 l+1

∼(ℏω−Ethres)
l+1 /2



   

Non-central potentialNon-central potential
In the above discussion we assumed a central potential of the 
interaction between the electron and the target. It is 
appropriate for atoms

For molecules, the potential is not central, the angular 
momentum l of the electron is not conserved.

The above arguments could still be used if one expands the 
electronic wave function in partial waves.

Then the photodetachment cross section is

σPD
(l )
∼k2 l+1

∼(E)l+1/2

σ=∑
l=0

σl

kinetic energy of the 
detached electron l* is the smallest l for which l>0



   

Wigner lawWigner law
σPD
(tot )
=∑

l=0

σPD
(l)



   

Molecular symmetry Molecular symmetry  instead of  instead of 
partial wave partial wave ll

The wave function of the electron detached from a molecule of 
symmetry 

If the wave function is totally symmetric (symmetry ) in the 
molecular group, the s-wave component is present in the 
above expansion and l*=0, s-wave photodetachment.

In CN- photodetachment, the initial state is CN-(1+), the final 
state of CN is 2+. Therefore, the electron is detached from the 
state +, . The dipole transitions +  → + are allowed. Therefore, 
l*=0, it is mainly s-wave photodetachment.



   

Molecular symmetry Molecular symmetry  instead of  instead of 
partial wave partial wave ll

The wave function of the electron detached from a molecule of 
symmetry 

If the wave function is not totally symmetric and  is 
transformed as x, y, or z then l*=1, p-wave photodetachment.

In O2
- photodetachment, O2

-(2g) O→ 2(3g
-) + e-. Therefore, the 

electron is detached from the state g . The dipole transition is 

not allowed into the totally symmetric state g
+. It could be 

u
+or g , i.e. l*=1, it is mainly the p-wave photodetachment.



   

Molecular symmetry Molecular symmetry  instead of  instead of 
partial wave partial wave ll

The wave function of the electron detached from a molecule of 
symmetry 

If the wave function is not totally symmetric and  is 
transformed as x, y, or z then l*=1, p-wave photodetachment.

In NH2
- photodetachment, NH2

-(1) NH→ 2(2B1) + e-. Therefore, 
the electron is detached from the state b1 , Dipole transitions b1 

 → a1 are allowed. Therefore, l*=0, it is mainly the s-wave 
photodetachment.



   

Molecular symmetry Molecular symmetry  instead of  instead of 
partial wave partial wave ll

The wave function of the electron detached from a molecule of 
symmetry 

If l*>1, we need to check if  is transformed as products, xy, xz, 
yz, z2, or x2-y2. If so, l*=2, the d-wave photodetachment.



   

Simpler methodSimpler method
One needs to identify the “effective” partial wave leff of the 
orbital from which the electron is detached.
 leff=0 if the orbital is totally symmetric.
leff=1 if it transforms as x, y, or z. 
leff=2 if it transforms as xy, yz, xz, x2-y2, or z2. 
The allowed angular momentum quantum numbers of the 
outgoing wave are l=leff±1.
 Then l* =min(leff±1)

Example: For O2
-(2g) O→ 2(3g

-) + e- , the electron is detached 

from the g orbital. g transforms as xy and yz, leff=2, therefore,  
l* =1.



   

The role of the permanent dipole The role of the permanent dipole 
momentmoment

For target without a charge and a dipole moment.

The e-dipole interaction behaves ~1/r2 at large distances. 
Therefore, the dipole moment of the target modifies the 
effective potential.
Partial waves are mixed, and the threshold behavior is 
modified.
A possible solution is to include the dipole interaction into the 
l(l+1)/2r2 term.
l(l+1)/2r2  → (+1)/2r2  with non-integer  and the 
corresponding Bessel functions.



   

The role of the permanent dipole The role of the permanent dipole 
momentmoment

V d (r ,θ)=−
e d cosθ

r2 cosθ=2√
π
3

Y 10 (θϕ)

⟨ j ,k ,m j , l ,m|V d (r ,θ)| j , k , m j , l±1,m ⟩≠0

|j ,k ,m j , l ,m ⟩

The potential of interaction

can be written as a matrix in the basis of states with definite 
angular momenta of the detached electron (l,m) and the target 
(j,k,mj)

⟨ j , k ,m j , l ,m| l̂2

2μ r2| j ,k ,m j , l ,m⟩=ℏ
2 l(l+1)

2μ r2



   

Effective partial waveEffective partial wave
⟨ j ,k ,m j , l ,m|V d (r ,θ)| j , k , m j , l±1,m ⟩≠0

The matrix is infinite. It is better to use a different basis, where 
the total angular momentum J is conserved.

This matrix is finite. If diagonalized, it gives eigenvalues , 
which can be viewed as (+1)/2r2 with non-integer .

(E)~E+1/2  
For OH- is about-0.2

⟨ j , k , l ,J|l̂2−2μd cos(θ)| j , k , l+1, J ⟩=
μ d k
j ( j+1) (

(J+ j+l+2)( j−J+l+1)(J− j+l+1)(J + j−l+1)
(2 l+1)(2 l+3) )

1 /2

⟨ j ,k , l , J|l̂ 2−2μ d cos(θ)| j , k , l ,J ⟩=l(l+1)



   

Large dipole moment of the targetLarge dipole moment of the target

For a large dipole moment, the smallest eigenvalue becomes 
negative.
If it is too negative, the corresponding  is an complex 
number, =i), is a real positive number.
The cross section becomes an oscillating function of E.
At large distances

T. F. O’Malley, Phys. Rev. 137 (1965)  



Molecules with large dipole momentsMolecules with large dipole moments

• A fixed in space dipole d can have an infinite number of dipole bound states 
if d > dcrit, with dcrit =1.6243 D. Energies of dipole bound states energies scale 
exponentially 

●The Wigner threshold law

N. Douguet et al.,Phys. Rev. A. 90 (2014)  

C4H-

T. F. O’Malley, Phys. Rev. 137 (1965)  

Complex Kohn Threshold lawEn

En+1

∼const , when n→∞

ν=√d
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