Experimental techniques
for cooling of molecules



Experimental techniques to
produce ultracold molecules
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Molecular beam deceleration



Laser cooling of atoms

Laser Cooling
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These scheme works for atoms.
[t is inefficient for molecules, having many “shelve” states.



Stark deceleration

“Low-field seeking” states:
quantum states for which
the Stark effect produces a
positive shift of energy with

field.

When molecules enter the
region of higher electric
field, the “low-field seeking”
molecules will climb up
along the potential energy,
the Kkinetic energy s
reduced, i.e. the molecules
slow down.

The field show “travel” with
the molecules.
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Stark deceleration

For a molecule with the
dipole moment of 1 debye,

kinetic energy is reduced by ©

Deceleration of

about 2 cm? (AT~3K) per ND, molecules 175 ms"
‘ 360 ms" |

each stage of the setup.

Dozens of stages are needed.
The largest setup has 326
stages.

Lowest Tlorlg is about 250 mK. 5 55 3 35 4 45 5
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Zeeman deceleration

Same idea as in th Stark
deceleration, but electric LT
field. )

First decelerator had 6

T 1]
stages and used for H. rap coils and

extraction plates

Pulsed magnetic field of
several teslas.

Such decelerators could be Skimmer
used to study radicals.
Pulsed valve

N. Vanhaecke, U. Meier, M. Andrist, B.H. Meier, and
F. Merkt, Phys. Rev. A 75, 031402 (2007).



Optical deceleration

Variable electric field, with a moving optical lattice —s 321 m/s
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NO signal

Two counter-propagating lasers
form a standing wave (optical
lattice).

If laser frequencies are different,

the lattice moves. R. Fulton, A.l. Bishop, M.N. Shneider, and

P.F. Barker, Nat. Phys. 2, 465 (2006).



Forming cold molecules from cold
atoms



Photoassociation
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Magnetic Feshbach resonance

Interatomic distance
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Transferring population to the
vibrational ground state

K(4p) + Rb(55)
FK(as) + Rb(5p)
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Collision-based methods



Buffer-gas cooling

Cryogenic molecular beam
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Superfluid helium droplets




Trapping and secondary cooling
techniques



Electrostatic traps

18mm '_*,_+

Polar molecules can be trapped
using  static inhomogeneous
electric fields.

2 mm{

Electrostatic trapping
of ammonia molecules

Hendrick L. Bethlem, Giel Berden, Floris M. H. Crompvoets,
Rienk T. Jongma, André J. A. van Roij & Gerard Meijer

Traps with dipolar, quadrupolar
or hexapolar fields.

Trapping

\"‘”x\

Examples: ND,, OH, NH, CO

Lowest T~25 mK
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Figure 2 Configuration of the trap with the voltages as applied during loading and
trapping. In the trap, lines of equal electric field are indicated and the cloud of moleculesis
sketched. The potential energy along the molecular beam axis of the ND, molecules in the
IJ Ky = 11 1} state with positive Stark shift is shown for both figld geometries.




Optical traps

Molecules can also be trapped by
intense optical fields. \

Optical lattice.

The trapping potential depends
on polarizability of the molecule.

As an example, using a 110W CO,

laser, Zahzam et al. produced a Ulr, t)=—lcz|E(r, Ik
trap depth of order 1 mK for CS, 4

molecules.

Examples: CS,, RbCs, Rb,, KRb.

Microwave field can also be used.
Instead of electronic transitions,
rotational transitions are used.




lon traps

To trap a positively-charged ion by
an electrostatic field, near
minimum of the trap, one should

have V-F <O,

[t is not possible in free space
because of the Laplace equation

V-V=4rp

Varying fields are used.
Paul (or quadrupole) traps.
lons move in the trap: low-

frequency (secular) motion and
high-frequency (micro) motion.
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22-pole traps (D. Gerlich)



Secondary cooling

Sympathetic cooling: Sympathetic Cooling Simply Pathetic Cooling
ot

Trapped cold molecules or ions r
might potentially be brought into V% 0‘
the ultra-cold regime by placing N
them in thermal contact with a 3
gas of ultracold atoms.

Problem: inelastic collisions.

Cavity-assisted laser cooling.
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