
   

Elements of the Elements of the 
scattering theoryscattering theory



   

Elastic scatteringElastic scattering



   

Two colliding (interacting) particlesTwo colliding (interacting) particles
Particles with masses m1 and m2. interacting with potential V(r1-r2)

Coordinate of the center of mass

In the centre-of-mass frame of reference, the coordinates of the two 
particles are

If one introduces the reduced mass 

The Hamilton function becomes
H ( p ,r)=

p⃗2

2μ
+V (r ) with p⃗=μ

d⃗r
dt

Then, the Hamiltonian operator is H=
p⃗2

2μ
+V (r) with p⃗=−ℏ ∇⃗r



   

  Scattering AmplitudeScattering Amplitude
Schrödinger equation 

Boundary conditions for a solution

Now, we assume that the potential falls off faster than 1/r2:



   

Current densityCurrent density
The amplitude f() depends on the current density, j(r).

Classically, j(r)=vn is the product of particle density and velocity. 

Quantum-mechanical expression is:

Its value depends on normalization of the incident wave. For example, 
for

the current density in the incident wave is

But j in the outgoing wave is 



   

Cross Section Cross Section 

Number of particles crossing area ds at large r per unit time in the 
outgoing wave:

with

I.e. the current density in the outgoing wave is 

If one normalizes with respect to the current density 

It is the differential elastic cross section. The integrated elastic cross 
section is



   

Cross Section Cross Section 



   

  Lippmann–Schwinger EquationLippmann–Schwinger Equation
The differential Schrödinger equation

is transformed into an integral equation using the free-particle Green's 
function

The wave function obeying 

                                                                                                         (1) 

is also a solution of 

The eikz in (1) can be replaced by any solution of the homogeneous 
equation 

Lippmann–Schwinger equation



   

Born ApproximationBorn Approximation
When                             the Green's function 

is approximated by

plugging it in

It is an exact solution if it converges. It converges if V(r) is less singular 
than 1/r2 at the origin and



   

Born ApproximationBorn Approximation
Inserting

in

We obtain

Retaining only the first term gives the Born approximation.



   

Angular Momentum: summaryAngular Momentum: summary
Definition                      properties

Eigenstates and eigenvalues

Spherical harmonics Ylm(,)



   

  Partial-Waves ExpansionPartial-Waves Expansion
The solution with boundary conditions

is usually represented as an expansion over states with a definite 
angular momentum, so-called partial waves.

From the Schrödinger equation in spherical 
coordinates

one obtains the radial Schrödinger equation



   

Scattering Phase ShiftsScattering Phase Shifts

For free motion, V(r)=0, 
the solutions of

are obtained from spherical Bessel functions

ul
(s) is a physical or regular solution 

ul
(c) is an unphysical or irregular solution 



   

Scattering Phase ShiftsScattering Phase Shifts
When V(r)≠0, 
the solutions of

at large distances are superpositions

The partial-wave expansion 

In                                          the eikz term is 

l is  scattering phase shifts



   

Scattering Phase ShiftsScattering Phase Shifts
In                                          the second term could be written as

                                    where fl are called partial­wave scattering amplitudes.



   

Scattering Phase ShiftsScattering Phase Shifts
Using                                          



   

Cross sectionCross section
Using                                          

Maximum possible cross section, the unitarity limit:



   

NormalizationNormalization
For a bound state

For a continuum state (regular solution of the Schrödinger equation):

To find the normalization coefficient, one uses the property: 

Therefore, the regular solution should be normalized as

Energy normalization:



   

  S-Matrix S-Matrix 

We derived

It can be written as

The quantity                      is the scattering matrix. 



   

Example: scattering from a hard sphereExample: scattering from a hard sphere

A hard sphere of radius R 

For r< R the solution ul(r)=0.

For r> R the solution is

At the boundary:

for l>0:



   

Scattering phase shifts for the hard sphereScattering phase shifts for the hard sphere



   

Low-energy collisionsLow-energy collisions
For small energies, the wave function near the origin is

But for small k, the solution ul(r) should be just Aul
(s)(r) , i.e. expression in 

the parenthesis should not depend on k. It means that

al are some constants depending on details of the interaction V(r). They 
are called scattering lengths.

At E  0 (→ k  0), the equation gives Wigner’s threshold law for various →
processes.

For elastic scattering



   

Scattering lengthScattering length

When k  0, the wave function at large → r is (kr is small but finite)

When al=0, ul
(0)(r) is just the regular solution of the radial Schrödinger 

equation with V=0.

When al=  → ∞, ul
(0)(r)~r-l, i.e. for l>0 it can be normalized to 1, i.e. it 

corresponds to a bound state exactly at the threshold.

For the s-wave 



   

Example: square potential wellExample: square potential well

Bound state with E=0 when 
KSL=/2 and VS is 

For this solution, ul=0 (r)  = →
constant at r>L. 

For a slightly larger VS, a 
bound state with E<0 
appears.



   

Scattering length for the square Scattering length for the square 
potential wellpotential well



   

Scattering length and weakly-Scattering length and weakly-
bound statesbound states

A weakly-bound state 

It corresponds to a large positive 
scattering length a.



   

Example: Ultracold cesium gasExample: Ultracold cesium gas



   

  Potential (shape) ResonancesPotential (shape) Resonances
Consider a solution of the Schrödinger equation, which behaves 
asymptotically

Consider the time-dependent Schrödinger equation. Its solution is

Consider now a wave packet (a superposition) of solutions of the 
stationary equation

(k) is a narrow function of k such that



   

  Potential (shape) ResonancesPotential (shape) Resonances

The lower limit of the integral can be extended to -∞. The first term in

can be written as

or in the form

For example:



   

  Potential (shape) ResonancesPotential (shape) Resonances
For the outgoing wave in

in the small interval of k

the integral

is approximated

The integral can be expressed in terms of the same function 



   

Wigner time-delayWigner time-delay
Incoming wave in

Outgoing wave

For a free wave (scattering with V=0), r=0 . 

Therefore, r is the space delay due to the potential. 

The time delay is

Time delay could be positive, zero, or negative. 

For example, for the hard sphere:



   

Resonances ans phase shiftsResonances ans phase shifts
If at certain energy E time delay becomes large, one calls this situation a 
resonance at energy Er. 

A resonance is characterized by its energy Er and time delay tr or its 
widths =4ħ/tr .

A resonance could also be viewed as a (almost) bound state, which 
decays with time.



   

Time-dependent vs time-Time-dependent vs time-
independent pictureindependent picture

The asymptotic behavior of a solution of TISE is

The formula can be used to obtain energies of bound states (k would be 
imaginary). For a bound state with E<0:

Now, we apply the same idea for positive energies (analytical 
continuation). If there is a solution of

Then the energy E  is a complex number                                 with negative Eim, 
such that the norm of the wave function decays with time as

Near E                                           because   l(E) is an analytical function near E

For real E



   

Time-dependent vs time-Time-dependent vs time-
independent pictureindependent picture

Width 



   

Breit-Wigner formulaBreit-Wigner formula
The l-wave cross section

It is Breit-Wigner formula for the cross section near a resonance.

For the Wigner time delay near a resonance 



   

CC33N + eN + e-- example example



   

Inelastic scatteringInelastic scattering



   

Several internal states of Several internal states of 
colliding particlescolliding particles

In the two particles after a collision could be in states different than their 
states before the collision, the total wave function should be written as

ξ refers to all internal degrees of freedom of projectile and target.

The internal states Υi define channels for the scattering process.
Wave functions ψi (r) are channel wave functions. 
The Schrödinger equation



   

Scattering amplitudeScattering amplitude
Open and closed channels,  channel thresholds Ej

The description of a scattering process starts with 

Total energy E is conserved, kinetic energy E-Ej changes if the internal 
state changes (inelastic scattering)

Open channel

Closed channel



   

Coupled-channel equationsCoupled-channel equations

Current density in channel j

The incoming current density is |ji| =ħki/μ. 

The differential cross section for scattering from the incident channel i to
the outgoing channel j is

Integrated cross section is



   

Multichannel Green's functionMultichannel Green's function
Multi-channel Schrödinger equation

in a vector form

Multi-channel Green's function

If  is a solution then it satisfies

Free-particle Green's function is



   

Multichannel Lippmann-Schwinger Multichannel Lippmann-Schwinger 
equationequation

Multi-channel Lippmann-Schwinger equation

Accounting for boundary conditions in

Lippmann-Schwinger equation becomes



   

Multichannel Scattering amplitudeMultichannel Scattering amplitude
Asymptotically, the equation

could be written as

Comparing with

the amplitudes can be written as



   

Multichannel Born approximationMultichannel Born approximation
If one substitutes hom  instead of n  in the incoming wave

one obtains the amplitude in the Born approximation

It looks as a Fourier transform of Vj,i. 

The Born scattering amplitude is a function of momentum transfer:



   

Feshbach resonancesFeshbach resonances
A shape resonance is trapped by a potential barrier. 

Feshbach resonance is trapped by a closed channel



   

Feshbach resonancesFeshbach resonances
If there is no coupling between the channels, V1,2=V2,1=0

If there is a weak coupling, u0(r) would not be 
modified significantly. 

The two component solution can then be written
as

From the second equation we

or



   

Feshbach resonancesFeshbach resonances
The first equation is

Again, a Green's function is introduced



   

Feshbach resonancesFeshbach resonances
From the Green's function and the first equation

we obtain

introducing res as



   

Feshbach resonancesFeshbach resonances
We had 

we obtain

For res we had



   

Feshbach resonancesFeshbach resonances
We had 

Introducing notations:

                                                                 position of the resonance

                                                                  width of the resonance

The tangent can be written as

It is useful to compare  with the Fermi golden rule



   

Landau-Zener modelLandau-Zener model



   

Non-adiabatic couplingNon-adiabatic coupling
The time dependent Schrödinger equation for a diatomic molecule  

Adiabatic electronic functions

and adiabatic basis set

The Schrödinger equation takes the form

For a truncated adiabatic basis set, the system of equations could be solved 
numerically.



   

Semi-classical treatmentSemi-classical treatment
For nuclei, we introduce a trajectory R=R(t)

Hel(r,R) depends on time t because of R(t).

The solution is now represented as

Inserting into the Schrödinger equation



   

Semi-classical treatmentSemi-classical treatment
Comparing with the formula for transition amplitudes in the time-
dependent perturbation theory

We conclude that

Let us call                            as R (characteristic length)

The applicability condition of the perturbation approach

                                                                   or



   

Two-state approximationTwo-state approximation
Adiabatic functions 1 and 2 .

They correspond to solid 
potential curves. 

In the basis of  1 and 2 



   

Diabatic basisDiabatic basis

Another pair 
1 and 

2 of 
electronic functions is 
introduced as a
linear combination:

In the basis of  
1 and 

2 

H12 and H21 as well as 
1 and 

2 depend weakly on R.



   

Two-state approximationTwo-state approximation

We want that  1,2 = 
1,2 far from the region of the strong coupling

We use approximation 

where Rp is defined as



   

Two-state approximationTwo-state approximation

Eigenvalues are

  1,2 = 
1,2 far from the region of the strong coupling

H el (ϕ)=(H 11 H 12

H 21 H 22
)≈(E 0+k1 x a

a E0+k 2 x)=

(E0+
(k1+k2)

2
x+
(k1−k2)

2
x a

a E0+
(k1+k2)

2
x−
(k1−k2)

2
x)=

(
E 0+F x+

Δ F
2

x a

a E0+F x−
Δ F
2

x)

E1,2=E0+F x∓
1
2
√(Δ F x)2+4 a2



   

Non-adiabatic functionsNon-adiabatic functions
Two-component wave function (t) is 

In the region of interaction (R withing R) we have either

(a) adiabatic non-crossing potentials E1 and E2 plus non-adiabatic coupling
(b) crossing zero-order potentials H11 and H22 plus adiabatic coupling



   

Transition probabilityTransition probability
We assume a to be small and start with t=-∞ and R far from Rp and end up 
with t=∞ and R again far from Rp. 

Initially, the system is in state  
1 

At the end |b2(+∞)|2 give the probability P0
12 of transition from state 

1 to 


1 . 

Therefore, 



   

Landau-Zener probabilityLandau-Zener probability
When a is large the treatment is not good, P0

12  could be become 
comparable or larger than 1. 

Solving the system of equations, one obtains

In atomic collisions nuclei go through the coupling region twice. Then the 
total probability for transition from 1 to 2 would be 



   

Few-body bound and Few-body bound and 
scattering states at low scattering states at low 

energies (near dissociation)energies (near dissociation)



   

3-body collisions

Quantum-mechanical description of three 
interacting particles

Nuclear physics

Chemical reactions A+B+C  AB + C at low →
energies

Many experiments observing three-body (and 
few-boby) quantum effects (Efimov states)

Symmetry of particles should be accounted for 
if only a few quantum states are populated.



   

Hyper-spherical coordinatesHyper-spherical coordinates
Three inter-particle distances are represented by two 
hyperangles and the hyper-radius.

Changing hyper-radius

Changing hyperangles



   

Jacobi coordinatesJacobi coordinates
Three different arrangements: three sets of 
coordinates



   

Mass-weighted Jacobi coordinatesMass-weighted Jacobi coordinates



   

Hyperspherical coordinatesHyperspherical coordinates



   

SymmetrySymmetry
If two or three particles are 
identical, one has to account for 
bosonic or fermionic nature of 
the particles.

Hyperspherical coordinates are 
well adapted for it.



   

CC3v3v / /DD33/ / SS33 symmetry group symmetry group

Group of permutation of three identical 
particles, S3:

S3 is isomorphic to the group of rotations of a 
triangular prism

and to the molecular point group C3v of

C3v = {E, C3, C3
2, 3v}



   

Types of wave functionsTypes of wave functions
Irreducible representationsIrreducible representations

A1 is a totally symmetric

wave function

A2 changes sign under 
any binary permutation

E is a 2-dimensional 
irrep.



   

AA11, , AA22, and , and EE states states
A1 is totally symmetric

wave function.

A2 changes sign under 
any binary 
permutation.

E is a 2-dimensional 
irrep.



   

Schrödinger equation in Schrödinger equation in 
hyperspherical coordinateshyperspherical coordinates

Hamiltonian



   

How to solve itHow to solve it
Adiabatic separation of the hyper-radius and hyperangles

An idea similar to the Born-Oppenheimer separation of 
electronic and nuclear coordinates



   

HH33
--



   

HH33
--



   

Hyperspherical adiabatic approximation is 
inaccurate

Non-adiabatic couplings between Ua (a) should be accounted for.

The vibrational wave function () as the expansion

in the basis of non-orthogonal basis functions 

where j() are some convenient basis functions and a,j() are 
hyperspherical adiabatic states calculated at fixed hyper­radii j, with the 
corresponding eigenvalue Ua(j); V() is the molecular (three­body) 
potential.

 , ,=∑k
yk  , ,ck

yk  , ,= j a , j  ,
k≡{a , j}



   

HH22DD-- and D and D
22HH--



   

H+H+H H2+H recombination
Diabatic 2­channel 3­body potential for H3.

Hyperspherical adiabatic energies obtained
for the uncoupled and coupled H3 
two­channel potential.  Crossings in the 
above figure turn into avoided crossings below.

V H 3
 , ,= A C e if

C e−if A 
A  , ,=[V 1  , ,V 2  , , ]/2
C  , ,=[V 1  , ,−V 2  , , ]/2

Obtained from ab initio calculation of 12A' (V1) 
and 22A'(V2) electronic states of H3.



   

H3 resonances



   

On Efimov states (1970)

r0 – effective range of 2-body potential, a- 2-body scattering 
length. If r0«a , the wave function in the region r0 «r« a does 
not depend on r0 or a.

Effective 3-body potential in the region is ~1/r2 . Thus, 3-
body bound states may exist even if there is no 2-body 
bound states. When a +, the number of 3-body bound 
states 

k / tan 0 =−1/ar 0 k2
/2



   

On Efimov states (1970)
When a=, the hyper-radial equation is

si is a transcendental constant. The lowest si is s0=1.00624i. 

Spectrum for  s0 is

When a, the spectrum:

g is the interaction 

parameter, such that at 

g=1,  a=



   

Observation of Efimov states
No direct observation. Kramer et al. see the increase of the 3-body 
recombination rate very close to 3-body dissociation limit as 
predicted by theory (Esry, Greene). This is an indirect evidence for 
Efimov states. 



   

Observation of Efimov states:

Theory

Experiment



   

More than three particles
Jacobi coordinates for four particles   hyperspherical →

coordinates



   

Another exampleAnother example

Complex absorbing 
potential is placed at 
large hyper-radius to 
absorb the 
dissociating outgoing 
wave flux.

U a U a −iA−l 
2


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Dissociative recombination of H3+: long-standing astrophysical problem
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

