Elements of the scattering theory
Elastic scattering
Two colliding (interacting) particles

Particles with masses m_1 and m_2, interacting with potential $V(r_1 - r_2)$

$$\mathbf{r} = r_1 - r_2$$

Coordinate of the center of mass

$$\mathbf{R}_{\text{cm}} = (m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2) / (m_1 + m_2)$$

In the centre-of-mass frame of reference, the coordinates of the two particles are

$$\mathbf{r}_1^{(\text{cm})} = \frac{m_2}{m_1 + m_2} \mathbf{r}, \quad \mathbf{r}_2^{(\text{cm})} = -\frac{m_1}{m_1 + m_2} \mathbf{r}$$

If one introduces the reduced mass μ

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

The Hamilton function becomes

$$H(p, r) = \frac{\mathbf{p}^2}{2\mu} + V(r) \quad \text{with} \quad \mathbf{p} = \mu \frac{d\mathbf{r}}{dt}$$

Then, the Hamiltonian operator is

$$H = \frac{\mathbf{p}^2}{2\mu} + V(r) \quad \text{with} \quad \mathbf{p} = -\hbar \nabla_r$$
Scattering Amplitude

Schrödinger equation

\[
\left[-\frac{\hbar^2}{2\mu} \Delta + V(\mathbf{r})\right] \psi(\mathbf{r}) = E \psi(\mathbf{r})
\]

\[E = \frac{\hbar^2 k^2}{2\mu} \]

Boundary conditions for a solution

\[
\psi(\mathbf{r}) \xrightarrow{r \to \infty} e^{i k z} + f(\theta, \phi) \frac{e^{i k r}}{r}
\]

Now, we assume that the potential falls off faster than \(1/r^2\):

\[
r^2 V(\mathbf{r}) \xrightarrow{r \to \infty} 0
\]
Current density

The amplitude $f(\theta, \phi)$ depends on the current density, $j(r)$.

Classically, $j(r) = \mathbf{v} n$ is the product of particle density and velocity.

Quantum-mechanical expression is:

$$j(r) = \mathcal{R} \left[\psi^*(r) \hat{p} \psi(r) \right] = \frac{\hbar}{2i\mu} \psi^*(r) \nabla \psi(r) + \text{cc}$$

Its value depends on normalization of the incident wave. For example, for

$$\psi(r) \xrightarrow{r \to \infty} e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r}$$

the current density in the incident wave is $j_{\text{in}} = \hat{e}_z \hbar k / \mu$

But j in the outgoing wave is

$$j_{\text{out}}(r) = \frac{\hbar k}{\mu} |f(\theta, \phi)|^2 \frac{\hat{e}_r}{r} + O\left(\frac{1}{r^3}\right)$$
Cross Section

Number of particles crossing area ds at large r per unit time in the outgoing wave:

$$\lim_{r \to \infty} j_{\text{out}}(r) \cdot ds$$

with

$$ds = \hat{e}_r r^2 d\Omega \quad d\Omega = \sin \theta d\theta d\phi$$

I.e. the current density in the outgoing wave is

$$(\hbar k/\mu) |f(\theta, \phi)|^2 d\Omega$$

If one normalizes with respect to the current density $|j_{\text{in}}| = \hbar k / \mu$

$$d\sigma = |f(\theta, \phi)|^2 d\Omega \quad \frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2$$

It is the differential elastic cross section. The integrated elastic cross section is

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \int_0^{2\pi} d\phi \int_0^\pi \sin \theta d\theta |f(\theta, \phi)|^2.$$
Cross Section

$$d\sigma = |f(\theta, \phi)|^2 d\Omega$$

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \int_0^{2\pi} d\phi \int_0^\pi \sin \theta d\theta \left| f(\theta, \phi) \right|^2$$
The differential Schrödinger equation

\[\left(E + \frac{\hbar^2}{2\mu} \Delta \right) \psi(\mathbf{r}) = V(\mathbf{r}) \psi(\mathbf{r}) \]

is transformed into an integral equation using the free-particle Green's function

\[\left(E + \frac{\hbar^2}{2\mu} \Delta_{\mathbf{r}} \right) \mathcal{G}(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') \]

\[\mathcal{G}(\mathbf{r}, \mathbf{r}') = -\frac{\mu}{2\pi \hbar^2} \frac{e^{ik|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \]

The wave function obeying

\[\psi(\mathbf{r}) = e^{ikz} + \int \mathcal{G}(\mathbf{r}, \mathbf{r}') V(\mathbf{r}') \psi(\mathbf{r}') d\mathbf{r}' \quad (1) \]

is also a solution of

\[\left(E + \frac{\hbar^2}{2\mu} \Delta \right) \psi(\mathbf{r}) = V(\mathbf{r}) \psi(\mathbf{r}) \]

The \(e^{ikz} \) in (1) can be replaced by any solution of the homogeneous equation

\[[E + (\hbar^2/(2\mu)) \Delta] \psi(\mathbf{r}) = 0 \]
Born Approximation

When \(|r| \gg |r'|\) the Green's function is approximated by

\[
G(r, r') = -\frac{\mu}{2\pi \hbar^2} \frac{e^{ik|r-r'|}}{|r-r'|} \left[e^{-ikr} + O\left(\frac{r'}{r}\right) \right].
\]

plugging it in

\[
\psi(r) = e^{ikz} + \int G(r, r') V(r')\psi(r')dr'.
\]

\[
f(\theta, \phi) = -\frac{\mu}{2\pi \hbar^2} \int e^{-ikr} V(r')\psi(r')dr'.
\]

It is an exact solution if it converges. It converges if \(V(r)\) is less singular than \(1/r^2\) at the origin and

\[
r^2 V(r) \to 0 \quad r \to \infty
\]
Born Approximation

Inserting

\[\psi(r) = e^{ikz} + \int G(r, r') V(r') \psi(r') dr' \]

in

\[f(\theta, \phi) = -\frac{\mu}{2\pi \hbar^2} \int e^{-ikr \cdot r'} V(r') \psi(r') dr' \]

We obtain

\[f(\theta, \phi) = -\frac{\mu}{2\pi \hbar^2} \left[\int dr' e^{-ikr \cdot r'} V(r') e^{ikz'}
ight. \\
+ \int dr' e^{-ikr \cdot r'} V(r') \int dr'' G(r', r'') V(r'') \psi(r'') \]

Retaining only the first term gives the Born approximation.

\[f^{\text{Born}}(\theta, \phi) = -\frac{\mu}{2\pi \hbar^2} \int dr' e^{-ikr \cdot r'} V(r') e^{ikz'} = -\frac{\mu}{2\pi \hbar^2} \int dr' e^{-i q \cdot r'} V(r') \]

\[q = k(\hat{e}_r - \hat{e}_z) \]

\[q = 2k \sin(\theta/2) \]
Angular Momentum: summary

Definition\[\hat{\mathbf{L}} = \mathbf{r} \times \hat{\mathbf{p}} \]\n
properties

\[[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z \]

Eigenstates and eigenvalues

\[\hat{\mathbf{L}}^2 Y_{l,m}(\theta, \phi) = l(l + 1)\hbar^2 Y_{l,m}(\theta, \phi), \quad l = 0, 1, 2, \ldots; \]

\[\hat{L}_z Y_{l,m}(\theta, \phi) = m\hbar Y_{l,m}(\theta, \phi), \quad m = -l, -l + 1, \ldots, l - 1, l. \]

Spherical harmonics \(Y_{lm}(\theta, \phi) \)

\[
Y_{l,m}(\theta, \phi) = e^{im\phi} \sin^{|m|}(\theta) \text{Pol}_{l-|m|}(\cos \theta) \\
\int Y_{l,m}(\Omega)^* Y_{l',m'}(\Omega) d\Omega = \int_0^{2\pi} d\phi \int_{-1}^{+1} d\cos \theta Y_{l,m}(\theta, \phi)^* Y_{l',m'}(\theta, \phi) \\
= \delta_{l,l'} \delta_{m,m'},
\]

\[Y_{l,m}(\theta - \pi, \phi + \pi) = Y_{l,-m}(\theta, \phi) = (-1)^l Y_{l,m}(\theta, \phi) \]

for two vectors \(\mathbf{a}, \mathbf{b}, \) with \(|\mathbf{a}| \leq |\mathbf{b}| \)

\[Y_{l,m=0}(\theta) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos \theta) \]

\[\int_{-1}^{1} P_l(x) P_{l'}(x) dx = \frac{2}{2l+1} \delta_{l,l'} \]

\[\frac{1}{|\mathbf{a} - \mathbf{b}|} = \sum_{l=0}^{\infty} \frac{|\mathbf{a}|^l}{|\mathbf{b}|^{l+1}} P_l(\cos \theta) \]
Partial-Waves Expansion

The solution with boundary conditions

$$\psi(r) \sim r \rightarrow \infty e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r}$$

is usually represented as an expansion over states with a definite angular momentum, so-called partial waves.

$$\psi(r, \theta) = \sum_{l=0}^{\infty} \frac{u_l(r)}{r} P_l(\cos \theta)$$

From the Schrödinger equation in spherical coordinates

$$-\frac{\hbar^2}{2\mu} \Delta = -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\hat{L}^2}{2\mu r^2}$$

one obtains the radial Schrödinger equation

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) \right] u_l(r) = E u_l(r)$$

$$\langle u_l | \tilde{u}_l \rangle = \int_0^\infty u_l(r)^* \tilde{u}_l(r) dr$$
Scattering Phase Shifts

For free motion, $V(r) = 0$, the solutions of

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r)\right] u_l(r) = E u_l(r)$$

are obtained from spherical Bessel functions

$$u_l^{(s)}(kr) = kr j_l(kr), \quad u_l^{(c)}(kr) = -kr y_l(kr),$$

$$u_l^{(s)}(kr) \underset{kr \to \infty}{\approx} \sin\left(kr - l \frac{\pi}{2}\right) + O\left(\frac{1}{kr}\right),$$

$$u_l^{(c)}(kr) \underset{kr \to \infty}{\approx} \cos\left(kr - l \frac{\pi}{2}\right) + O\left(\frac{1}{kr}\right),$$

$$u_l^{(s)}(kr) \underset{kr \to 0}{\sim} \frac{\sqrt{\pi}(kr)^{l+1}}{2^{l+1} \Gamma(l + \frac{3}{2})} \left[1 - \frac{(kr)^2}{4l + 6}\right]$$

$u_l^{(s)}$ is a physical or regular solution

$$u_l^{(c)}(kr) \underset{kr \to 0}{\sim} \frac{2^l \Gamma(l + \frac{1}{2})}{\sqrt{\pi}(kr)^l} \left[1 + \frac{(kr)^2}{4l - 2}\right]$$

$u_l^{(c)}$ is an unphysical or irregular solution
Scattering Phase Shifts

When $V(r) \neq 0$, the solutions of

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) \right] u_l(r) = Eu_l(r)$$

at large distances are superpositions

$$u_l(r) \propto \lim_{r \to \infty} A u_l^{(s)}(kr) + B u_l^{(c)}(kr) \quad \lim_{r \to \infty} \sin \left(kr - l \frac{\pi}{2} + \delta_l \right)$$

δ_l is scattering phase shifts

$$\tan \delta_l = \frac{B}{A}$$

The partial-wave expansion

$$\psi(r) = \psi(r, \theta) = \sum_{l=0}^{\infty} \frac{u_l(r)}{r} P_l(\cos \theta)$$

In

$$\psi(r) \sim e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r}$$

the e^{ikz} term is

$$e^{ikz} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos \theta)$$
Scattering Phase Shifts

In the second term could be written as

$$\psi(\mathbf{r}) \xrightarrow{r \to \infty} e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r}$$

where f_l are called partial-wave scattering amplitudes.

$$f(\theta) = \sum_{l=0}^{\infty} f_l P_l(\cos \theta)$$

$$\psi(\mathbf{r}) = \psi(r, \theta) = \sum_{l=0}^{\infty} \frac{u_l(r)}{r} P_l(\cos \theta).$$

$$e^{ikz} = \sum_{l=0}^{\infty} (2l + 1) i^l j_l(kr) P_l(\cos \theta)$$

$$u_l(r) \xrightarrow{r \to \infty} i^l \left[\frac{2l + 1}{k} \sin \left(kr - l \frac{\pi}{2} \right) + f_l e^{i(kr-l\pi/2)} \right]$$

$$= i^l \left[\left(\frac{2l + 1}{k} + i f_l \right) \sin \left(kr - l \frac{\pi}{2} \right) + f_l \cos \left(kr - l \frac{\pi}{2} \right) \right]$$
Scattering Phase Shifts

\[u_l(r) \xrightarrow{r \to \infty} A u_l^{(s)}(kr) + B u_l^{(c)}(kr) \xrightarrow{r \to \infty} \sin \left(kr - l \frac{\pi}{2} + \delta_l \right) \]
\[\tan \delta_l = B/A \]

\[u_l(r) \xrightarrow{r \to \infty} i^l \left[\frac{2l + 1}{k} \sin \left(kr - l \frac{\pi}{2} \right) + f_l e^{i(kr - l\pi/2)} \right] \]
\[= i^l \left[\left(\frac{2l + 1}{k} + i f_l \right) \sin \left(kr - l \frac{\pi}{2} \right) + f_l \cos \left(kr - l \frac{\pi}{2} \right) \right] \]

\[\cot \delta_l = \frac{A}{B} \equiv \frac{2l + 1}{kf_l} + i \]
\[f_l = \frac{2l + 1}{k} e^{i\delta_l} \sin \delta_l = \frac{2l + 1}{2ik} \left(e^{2i\delta_l} - 1 \right) \]

\[u_l(r) \xrightarrow{r \to \infty} \frac{2l + 1}{k} i^l e^{i\delta_l} \sin \left(kr - l \frac{\pi}{2} + \delta_l \right) \]

\[\psi(r) \xrightarrow{r \to \infty} \sum_{l=0}^{\infty} \frac{2l + 1}{kr} i^l e^{i\delta_l} \sin \left(kr - l \frac{\pi}{2} + \delta_l \right) P_l(\cos \theta) \]
Cross section

Using

\[
\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \int_0^{2\pi} d\phi \int_0^\pi \sin \theta d\theta |f(\theta, \phi)|^2
\]

\[
\psi(r) \sim \sum_{l=0}^\infty \frac{2l + 1}{k r} i^l e^{i\delta_l} \sin \left(kr - l \frac{\pi}{2} + \delta_l \right) P_l(\cos \theta)
\]

\[
\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \frac{1}{k^2} \sum_{l,l'} e^{i(\delta_l - \delta_{l'})} (2l + 1) \sin \delta_l (2l' + 1) \sin \delta_{l'} P_l(\cos \theta) P_{l'}(\cos \theta)
\]

\[
\int_{-1}^1 P_l(x) P_{l'}(x) dx = \frac{2}{2l + 1} \delta_{l,l'}
\]

\[
\sigma = \sum_{l=0}^\infty \frac{4\pi}{2l + 1} |f_l|^2 = \frac{4\pi}{k^2} \sum_{l=0}^\infty (2l + 1) \sin^2 \delta_l = \frac{\pi}{k^2} \sum_{l=0}^\infty (2l + 1) |e^{2i\delta_l} - 1|^2
\]

\[
\sigma = \sum_{l=0}^\infty \sigma_{[l]}, \quad \sigma_{[l]} = \frac{4\pi}{k^2} (2l + 1) \sin^2 \delta_l
\]

Maximum possible cross section, the unitarity limit:

\[
(\sigma_{[l]})_{\text{max}} = \frac{4\pi}{k^2} (2l + 1)
\]
Normalization

For a bound state
\[
\langle u_b | u_b \rangle = \int_0^\infty u_b(r)^* u_b(r) \, dr = 1
\]

For a continuum state (regular solution of the Schrödinger equation):
\[
\langle u^{(k)}_l | u^{(k')}_l \rangle \propto \delta(k - k')
\]

To find the normalization coefficient, one uses the property:
\[
\langle u^{(k)}_s | u^{(k')}_s \rangle = \int_0^\infty \sin(kr) \sin(k'r) \, dr = \frac{\pi}{2} \delta(k - k')
\]

Therefore, the regular solution should be normalized as
\[
\lim_{r \to \infty} u^{(k)}_l(r) \sim \sqrt{\frac{2}{\pi}} \sin\left(kr - l \frac{\pi}{2} + \delta_l \right) \quad \Rightarrow \quad \langle u^{(k)}_l | u^{(k')}_l \rangle = \delta(k - k')
\]

Energy normalization:
\[
\lim_{r \to \infty} \tilde{u}^{(E)}_l(r) \sim \sqrt{\frac{2\mu}{\pi \hbar^2 k}} \sin\left(kr - l \frac{\pi}{2} + \delta_l \right) \quad \Rightarrow \quad \langle \tilde{u}^{(E)}_l | \tilde{u}^{(E')}_l \rangle = \delta(E - E')
\]
We derived
\[u_l(r) \to_{r \to \infty} \frac{2l + 1}{k} i^l e^{i\delta_l} \sin \left(kr - l \frac{\pi}{2} + \delta_l \right) \]

It can be written as
\[u_l(r) \sim \frac{2l + 1}{2k} i^{l+1} \left[e^{-i(kr-l\pi/2)} - e^{2i\delta_l}e^{i(kr-l\pi/2)} \right] \]
\[= \frac{2l + 1}{2k} i^{2l+1} \left[e^{-ikr} - (-1)^l e^{2i\delta_l}e^{ikr} \right]. \]

The quantity \(S_l = e^{2i\delta_l} \) is the scattering matrix.
Example: scattering from a hard sphere

A hard sphere of radius \(R \)

For \(r < R \) the solution \(u_l(r) = 0 \).

For \(r > R \) the solution is

\[
Au_l^{(s)}(kr) + Bu_l^{(c)}(kr)
\]

At the boundary:

\[
Au_l^{(s)}(kR) + Bu_l^{(c)}(kR) = 0
\]

\[
\frac{B}{A} = -\frac{u_l^{(s)}(kR)}{u_l^{(c)}(kR)} = \frac{j_l(kR)}{y_l(kR)}
\]

\[
\delta_l = \arctan \left(\frac{j_l(kR)}{y_l(kR)} \right)
\]

\[
\tan \delta_l = \frac{B}{A}
\]

\[
\delta_{l=0} = -kR
\]

for \(l > 0 \):

\[
\delta_l \underset{kR \to 0}{\sim} -\frac{\pi}{\Gamma(l + \frac{3}{2})\Gamma(l + \frac{1}{2})} \left(\frac{kR}{2} \right)^{2l+1} \left[1 - \left(\frac{kR}{2} \right)^2 \left(\frac{1}{l - \frac{1}{2}} + \frac{1}{l + \frac{3}{2}} \right) \right]
\]

\[
\delta_l \underset{kR \to \infty}{\sim} -kR + l \frac{\pi}{2}
\]
Scattering phase shifts for the hard sphere

\[\delta_{l=0} = -kR \]

\[\delta_l \xrightarrow{kR \to 0} -\frac{\pi}{\Gamma(l + \frac{3}{2})\Gamma(l + \frac{1}{2})} \left(\frac{kR}{2} \right)^{2l+1} \left[1 - \left(\frac{kR}{2} \right)^2 \left(\frac{1}{l - \frac{1}{2}} + \frac{1}{l + \frac{3}{2}} \right) \right] \]

\[\delta_l \xrightarrow{kR \to \infty} -kR + l \frac{\pi}{2} \]
Low-energy collisions

For small energies, the wave function near the origin is

$$u_l(r) \propto u_l^{(s)}(kr) + \tan \delta_l u_l^{(c)}(kr)$$

$$\sim \frac{\sqrt{\pi k^{l+1}}}{2^{l+1} \Gamma(l + \frac{3}{2})} \left[r^{l+1} + \tan \delta_l \frac{2^{2l+1} \Gamma(l + \frac{1}{2}) \Gamma(l + \frac{3}{2})}{\pi k^{2l+1} r^l} \right]$$

But for small k, the solution $u_l(r)$ should be just $A u_l^{(s)}(r)$, i.e. expression in the parenthesis should not depend on k. It means that

$$\tan \delta_l \sim -\frac{\pi}{\Gamma(l + \frac{1}{2}) \Gamma(l + \frac{3}{2})} \left(\frac{a_l k}{2} \right)^{2l+1}$$

a_l are some constants depending on details of the interaction $V(r)$. They are called scattering lengths.

At $E \to 0$ ($k \to 0$), the equation gives Wigner’s threshold law for various processes.

$$\lim_{k \to 0} \frac{d\sigma}{d\Omega} = a^2 \quad \text{and} \quad \lim_{k \to 0} \sigma = 4\pi a^2$$

For elastic scattering
When $k \to 0$, the wave function at large r is (kr is small but finite)

$$u_l(r) \propto \tan \delta_l u_l^{(c)}(kr) + \frac{\sqrt{\pi} k^{l+1}}{2^{l+1} \Gamma(l + \frac{3}{2})} \left[r^{l+1} + \frac{\tan \delta_l 2^{l+1} \Gamma(l + \frac{1}{2}) \Gamma(l + \frac{3}{2})}{\pi k^{2l+1} r^l} \right]$$

When $a_l = 0$, $u_l^{(0)}(r)$ is just the regular solution of the radial Schrödinger equation with $V=0$.

When $a_l = \to \infty$, $u_l^{(0)}(r) \sim r^{-l}$, i.e. for $l>0$ it can be normalized to 1, i.e. it corresponds to a bound state exactly at the threshold.

For the s-wave

$$u_l=0 \propto \frac{r}{\sqrt{a}} \sim 1 - \frac{r}{a}$$
Example: square potential well

\[V(r) = \begin{cases} -V_s & \text{for } r \leq L, \\ 0 & \text{for } r > L, \end{cases} \quad V_s = \frac{\hbar^2 K_s^2}{2\mu} \]

Bound state with \(E=0 \) when \(K_S L = \pi/2 \) and \(V_s \) is

\[E_0 = (\frac{\pi}{2} \hbar)^2 / (2\mu L^2) \]

For this solution, \(u_{l=0} (r) \rightarrow = \) constant at \(r > L \).

For a slightly larger \(V_s \), a bound state with \(E < 0 \) appears.
Scattering length for the square potential well

For $V_S > E_0$, $a_0 > 0$
For $V_S < E_0$, $a_0 < 0$
For $V_S = E_0$, $a = \infty$
For $V_S = 0$, $a = 0$

$V(r) = V_0$ for $r < L$
$V(r) = 0$ for $r \geq L$

$u_{l=0}^{(0)} \propto r \to \infty$ $r - a \propto 1 - \frac{r}{a}$

$a = L - \frac{\tan(K_S L)}{K_S}$

$\kappa L = \frac{3\pi}{2}$
Scattering length and weakly-bound states

A weakly-bound state

\[E_b = -\frac{\hbar^2\kappa_b^2}{2\mu} \]

\[u_{l=0}^{(\kappa_b)}(r) \propto 1 - r \left[\kappa_b + O(\kappa_b^2) \right] \quad (\kappa_b > 0) \]

\[u_{l=0}^{(0)} \propto r \to \infty \quad r - a \propto 1 - \frac{r}{a} \]

\[\frac{1}{a} \sim \kappa_b + O(\kappa_b^2) \]

\[E_b = -\frac{\hbar^2\kappa_b^2}{2\mu} \sim -\frac{\hbar^2}{2\mu a^2} + O\left(\frac{1}{a^3}\right) \]

It corresponds to a large positive scattering length \(a \).
Example: Ultracold cesium gas

FIG. 3: (color online). Binding energy of cesium molecules near three Feshbach resonances as a function of the magnetic field. Zero energy corresponds to two Cs atoms in the absolute hyperfine ground-state sublevel $|F = 3, m_F = 3\rangle$. The measurements are shown as open circles. The fit (solid line) is based on Eq. (13), see text. The inset shows an expanded view in the region of the two d- and g-wave narrow resonances. The error bars refer to the statistical uncertainties.

FIG. 4: (color online) Scattering length of $|F = 3, m_F = 3\rangle$ cesium atoms in the magnetic field range where three Feshbach resonances overlap. The solid curve shows the result of this work while the dashed curve represents the prediction from a previous multi-channel calculation [17].

\[
E_b = -\frac{\hbar^2 k_b^2}{2\mu} a \to \infty - \frac{\hbar^2}{2\mu a^2} + O\left(\frac{1}{a^3}\right)
\]
Consider a solution of the Schrödinger equation, which behaves asymptotically

\[u_l(r) \xrightarrow{r \to \infty} e^{-i(kr - l\pi/2)} - e^{2i\delta_l} e^{i(kr - l\pi/2)} \]

Consider the time-dependent Schrödinger equation. Its solution is

\[u^{(k)}(r, t) = u(r) e^{-i\omega t} \]

where

\[\omega(k) = \frac{\hbar k^2}{2\mu} \]

Consider now a wave packet (a superposition) of solutions of the stationary equation

\[u(r, t) = \int_0^\infty u^{(k)}(r, t) \phi(k) dk \]

\[\phi(k) \] is a narrow function of \(k \) such that

\[\omega(k) \approx \bar{\omega} + \bar{\nu}(k - \bar{k}), \quad \bar{\omega} = \omega(\bar{k}), \quad \bar{\nu} = \frac{d\omega}{dk} \bigg|_{\bar{k}} = \frac{\hbar \bar{k}}{\mu} \]
Potential (shape) Resonances

\[\omega(k) \approx \tilde{\omega} + \bar{\nu}(k - \bar{k}), \quad \tilde{\omega} = \omega(\bar{k}), \quad \bar{\nu} = \left. \frac{d\omega}{dk} \right|_{\bar{k}} = \frac{\hbar \bar{k}}{\mu} \]

The lower limit of the integral can be extended to \(-\infty\). The first term in

\[u(r, t) = \int_{0}^{\infty} u^{(k)}(r, t) \phi(k) dk \]

can be written as

\[u^{\text{in}}(r, t) = \int_{-\infty}^{\infty} e^{-i(kr + \omega t - l\pi/2)} \phi(k) dk \]

\[\approx e^{-ikr - i\tilde{\omega}t} l \int_{-\infty}^{\infty} e^{-i(k-\bar{k})(r+\bar{\nu}t)} \tilde{\phi}(k - \bar{k}) d(k - \bar{k}) \]

or in the form

\[u^{\text{in}}(r, t) = e^{-ikr - i\tilde{\omega}t} \Psi(r + \bar{\nu}t) \]

For example:

\[\tilde{\phi}(q) \propto e^{-B^2 q^2/2} \quad \Rightarrow \quad \Psi(x) \propto e^{-x^2/(2B^2)} \]
Potential (shape) Resonances

For the outgoing wave in the small interval of k

$$u_l(r) \sim \int_{-\infty}^{\infty} e^{-i(kr-l\pi/2)} - e^{2i\delta_l} e^{i(kr-l\pi/2)}$$

the integral

$$\delta_l(k) \approx \delta_l(\bar{k}) + (k - \bar{k}) \frac{d\delta_l}{dk} \bigg|_{\bar{k}}$$

is approximated

$$u(r, t) = \int_0^\infty u^{(k)}(r, t) \phi(k) dk$$

$$u^{\text{out}}(r, t) = -\int_{-\infty}^{\infty} e^{i(kr-o\omega t-l\pi/2)} e^{2i\delta_l} \phi(k) dk$$

$$\approx -e^{i\bar{k}r-i\bar{\omega}t} e^{2i\delta_l(\bar{k})} (-i)^l \int_{-\infty}^{\infty} e^{-i(k-\bar{k})[-(r-\bar{\omega}t+\Delta r)]} \tilde{\phi}(k-\bar{k}) d(k-\bar{k})$$

$\Delta r = 2 \frac{d\delta_l}{dk} \bigg|_{\bar{k}}$

The integral can be expressed in terms of the same function Ψ

$$u^{\text{out}}(r, t) = e^{i\bar{k}r-i\bar{\omega}t} e^{2i\delta_l(\bar{k})} (-1)^l \Psi[-(r-\bar{\omega}t+\Delta r)]$$
Wigner time-delay

Incoming wave in
\[u^{\text{in}}(r, t) = e^{-ikr - i\omega t} \psi (r + \bar{v}t) \]

Outgoing wave
\[u^{\text{out}}(r, t) = e^{ikr - i\omega t} e^{2i\delta_l(\bar{k})} (-1)^l \psi \left[-(r - \bar{v}t + \Delta r) \right] \]

For a free wave (scattering with \(V=0 \), \(\Delta r = 0 \).

Therefore, \(\Delta r \) is the space delay due to the potential.

The time delay is
\[\Delta t = \frac{\Delta r}{\bar{v}} = 2 \frac{\mu}{\hbar k} \frac{d\delta_l}{dk} \bigg|_{\bar{k}} = 2\hbar \frac{d\delta_l}{dE} \bigg|_{\tilde{E}} \quad \tilde{E} = 4\mu \bar{k}^2

Time delay could be positive, zero, or negative.

For example, for the hard sphere:
\[\delta_{l=0} = -kR \]

\[\delta_l \xrightarrow{kR \to \infty} -kR + \frac{l\pi}{2} \]

\[\Delta r = -2R \text{ for } l = 0 \]

\[\Delta r \xrightarrow{kR \to \infty} -2R \text{ for } l > 0 \]
Resonances and phase shifts

If at certain energy E time delay becomes large, one calls this situation a resonance at energy E_r.

A resonance is characterized by its energy E_r and time delay Δt_r or its widths $\Gamma = 4\hbar / \Delta t_r$.

A resonance could also be viewed as a (almost) bound state, which decays with time.

FIG. 3. Potentials of Li$_2$ ($2p+2s$). Full line: $B^1\Pi_u$ (Ref. [9]); dashed line: $1^1\Pi_g$ (Ref. [15]).

FIG. 4. The wave function (real part) of the $v' = 16, J' = 1$ level of 6Li7Li. The dissociation rate is $k = 8670 \times 10^6$ s$^{-1}$, corresponding to a lifetime $\tau = 115$ ps. The inset shows the long-range part responsible for the decay due to tunneling through the barrier.
The asymptotic behavior of a solution of TISE is
\[u_l(r) \approx 0 \frac{2l + 1}{2k} i^{l+1} \left[e^{-i(kr-l\pi/2)} - e^{2i\delta_l} e^{i(kr-l\pi/2)} \right] \]

The formula can be used to obtain energies of bound states \((k\text{ would be imaginary}).\) For a bound state with \(E<0: \]
\[e^{-i\delta_l(E)} = 0. \]

Now, we apply the same idea for positive energies (analytical continuation). If there is a solution of
\[e^{-i\delta_l(E)} = 0. \]

Then the energy \(E\) is a complex number \(E = E_{re} + iE_{im}\) with negative \(E_{im}\), such that the norm of the wave function decays with time as
\[|u_l|^2 \propto e^{2E_{im}t/\hbar} \]

Near \(E\)
\[e^{-i\delta_l(E)} \approx C(E - E) \]
because \(\delta_l(E)\) is an analytical function near \(E\)

For real \(E\)
\[e^{i\delta_l(E)} = \left[e^{-i\delta_l(E)}\right]^* \approx C^*(E - E)^* \]

\[e^{-i\delta_l(E)} = 0. \]
Time-dependent vs time-independent picture

\[e^{-i\delta_l(E)} \approx C(E - \mathcal{E}) \]

\[e^{+i\delta_l(E)} = \left[e^{-i\delta_l(E)} \right]^* \approx C^*(E - \mathcal{E}^*) \]

\[S_l = e^{+i\delta_l(E)} / e^{-i\delta_l(E)} \]

\[S_l = \frac{C^*}{C} \frac{E - E_{re} + iE_{im}}{E - E_{re} - iE_{im}} \]

\[2\delta_l = -2 \arg(C) + 2 \arctan \left(\frac{E_{im}}{E - E_{re}} \right) \]

\[\tau_R = \frac{\hbar}{\Gamma} |u_l|^2 \propto e^{2E_{im}t/\hbar} \text{ electron energy (eV)} \]
Breit-Wigner formula

The l-wave cross section

$$\sigma[l] = \frac{4\pi}{k^2} (2l + 1) \sin^2 \delta_l = \frac{4\pi}{k^2} \frac{2l + 1}{1 + \cot^2 \delta_l} = \frac{4\pi}{k^2} \frac{(2l + 1)(\Gamma/2)^2}{(E - E_R)^2 + (\Gamma/2)^2}$$

$$2\delta_l = -2 \arg(C) + 2 \arctan\left(\frac{E_{im}}{E - E_{re}}\right)$$

It is Breit-Wigner formula for the cross section near a resonance.

For the Wigner time delay near a resonance

$$\Delta t = 2\hbar \frac{d\delta_l}{dE} = \frac{\hbar \Gamma}{(E - E_R)^2 + (\Gamma/2)^2}$$
$C_3N + e^- \text{ example}$

$$\sigma_{[l]} = \frac{4\pi}{k^2} (2l + 1) \sin^2 \delta_l = \frac{4\pi}{k^2} \frac{2l + 1}{1 + \cot^2 \delta_l} = \frac{4\pi}{k^2} \frac{(2l + 1)(\Gamma/2)^2}{(E - E_R)^2 + (\Gamma/2)^2}$$
Inelastic scattering
Several internal states of colliding particles

In the two particles after a collision could be in states different than their states before the collision, the total wave function should be written as

$$\Psi (r, \xi) = \sum_j \psi_j (r) \gamma_j (\xi)$$

ξ refers to all internal degrees of freedom of projectile and target.

$$\hat{H}_\xi \gamma_i (\xi) = E_i \gamma_i (\xi)$$

The internal states γ_i define **channels** for the scattering process. Wave functions $\psi_i (r)$ are channel wave functions.

The Schrödinger equation

$$\left[-\frac{\hbar^2}{2\mu} \Delta + \hat{H}_\xi + \hat{W} (r, \xi) \right] \Psi (r, \xi) = E \Psi (r, \xi)$$

$$-\frac{\hbar^2}{2\mu} \Delta \psi_i (r) + \sum_j V_{i,j} \psi_j (r) = (E - E_i) \psi_i (r).$$

$$V_{i,j} = \langle \gamma_i | \hat{W} | \gamma_j \rangle \xi$$
Scattering amplitude

Open and closed channels, channel thresholds E_j

$$\Psi(r, \xi) = \sum_j \psi_j(r) \gamma_j(\xi)$$

The description of a scattering process starts with

$$\Psi(r, \xi) \xrightarrow{r \to \infty} \sum_{j \text{ open}} f_{i,j}(\theta, \phi) \frac{e^{ik_j r}}{r} \gamma_j(\xi)$$

Total energy E is conserved, kinetic energy $E - E_j$ changes if the internal state changes (inelastic scattering)

Open channel

$$E - E_j = \frac{\hbar^2 k_j^2}{2\mu} > 0, \quad k_j = \frac{1}{\hbar} \sqrt{2\mu(E - E_j)}.$$

Closed channel

$$E - E_j = -\frac{\hbar^2 \kappa_j^2}{2\mu} < 0, \quad \kappa_j = \frac{1}{\hbar} \sqrt{2\mu(E_j - E)}.$$
Coupled-channel equations

\[\Psi (r, \xi) \underset{r \to \infty}{\sim} e^{ikz} \gamma_i(\xi) + \sum_{j \text{ open}} f_{i,j}(\theta, \phi) \frac{e^{ikjr}}{r} \gamma_j(\xi) \]

\[\psi_j(r) \underset{r \to \infty}{\sim} e^{ikz} \delta_{i,j} + f_{i,j}(\theta, \phi) \frac{e^{ikjr}}{r} \]

Current density in channel \(j \)

\[j_j(r) = \frac{\hbar k_j}{\mu} |f_{i,j}(\theta, \phi)|^2 \hat{e}_r \frac{2}{r^2} + O\left(\frac{1}{r^3} \right) \]

The incoming current density is \(|j_i| = \hbar k_i / \mu \).

The differential cross section for scattering from the incident channel \(i \) to the outgoing channel \(j \) is

\[\frac{d\sigma_{i \to j}}{d\Omega} = \frac{k_j}{k_i} |f_{i,j}(\theta, \phi)|^2 \]

Integrated cross section is

\[\sigma = \sum_{j \text{ open}} \sigma_{i \to j}, \quad \sigma_{i \to j} = \int \frac{d\sigma_{i \to j}}{d\Omega} d\Omega = \frac{k_j}{k_i} \int |f_{i,j}(\theta, \phi)|^2 d\Omega \]
\textbf{Multichannel Green's function}

\textbf{Multi-channel Schrödinger equation}

\[-\frac{\hbar^2}{2\mu} \Delta \psi_i (\mathbf{r}) + \sum_i V_{i,j} \psi_j (\mathbf{r}) = (E - E_i) \psi_i (\mathbf{r}).\]

in a vector form

\[
\left(\hat{E} + \frac{\hbar^2}{2\mu} \Delta \right) \psi = \hat{V} \psi
\]

\textbf{Multi-channel Green's function}

\[
\begin{bmatrix}
\hat{E} + \frac{\hbar^2}{2\mu} \Delta \\
E - E_j + \frac{\hbar^2}{2\mu} \Delta
\end{bmatrix} \mathcal{G}_{j,j} (\mathbf{r}, \mathbf{r}') = \delta (\mathbf{r} - \mathbf{r}')
\]

\textbf{If } \Psi \text{ is a solution then it satisfies}

\[
\Psi = \Psi^{\text{hom}} + \hat{G} \hat{V} \Psi, \quad [\hat{E} + \frac{\hbar^2}{2\mu} \Delta] \Psi^{\text{hom}} = 0
\]

\textbf{Free-particle Green's function is}

\[
\mathcal{G}_{j,j} (\mathbf{r}, \mathbf{r}') = -\frac{\mu}{2\pi \hbar^2} \frac{e^{ik_j |\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \quad |\mathbf{r}||\mathbf{r}'| - \frac{\mu}{2\pi \hbar^2} \frac{e^{ik_j |\mathbf{r}|}}{r} e^{-ik_j \cdot \mathbf{r}'}
\]

\[k_j = k_j \hat{e}_r\]
Multi-channel Lippmann-Schwinger equation

\[\Psi = \psi_{\text{hom}} + \hat{G} \hat{V} \psi \]

Accounting for boundary conditions in

\[\Psi(r, \xi) \sim \sum_{j \text{ open}} f_{i, j}(\theta, \phi) \frac{e^{ikjr}}{r} \gamma_j(\xi) \]

\[\psi_{i, \text{hom}}(r) = e^{ik_ir}, \quad \psi_{j, \text{hom}}(r) \equiv 0 \quad \text{for } j \neq i \]

Lippmann-Schwinger equation becomes

\[\psi_j(r) = e^{ik_jz} \delta_{i,j} + \int G_{j, j}(r, r') \sum_n V_{j, n} \psi_n(r') \, dr' \]
Multichannel Scattering amplitude

Asymptotically, the equation

$$\psi_j(r) = e^{ik_i z} \delta_{i,j} + \int G_{j,j}(r, r') \sum_n V_{j,n} \psi_n(r') \, dr'$$

could be written as

$$\psi_j(r) \overset{r \to \infty}{\to} e^{ik_i z} \delta_{i,j} - \frac{\mu}{2\pi \hbar^2} \frac{e^{ik_j r}}{r} \sum_n \int e^{-ik_j \cdot r'} V_{j,n} \psi_n(r') \, dr'$$

Comparing with

$$\Psi(r, \xi) \overset{r \to \infty}{\to} e^{ik_i z} \gamma_i(\xi) + \sum_{j \text{ open}} f_{i,j}(\theta, \phi) \frac{e^{ik_j r}}{r} \gamma_j(\xi)$$

the amplitudes can be written as

$$f_{i,j}(\theta, \phi) = -\frac{\mu}{2\pi \hbar^2} \sum_n \int e^{-ik_j \cdot r'} V_{j,n}(r') \psi_n(r') \, dr'.$$
If one substitutes Ψ^{hom} instead of Ψ^n in the incoming wave, one obtains the amplitude in the Born approximation:

$$f_{i,j}^{\text{Born}}(\theta, \phi) = -\frac{\mu}{2\pi \hbar^2} \sum_n \int e^{-i\mathbf{k}_j \cdot \mathbf{r}'} V_{j,n}(\mathbf{r}') \psi_n(\mathbf{r}') \, d\mathbf{r}'$$

It looks as a Fourier transform of $V_{j,i}$.

The Born scattering amplitude is a function of momentum transfer:

$$\mathbf{q} = \mathbf{k}_j - \mathbf{k}_i \hat{e}_z = k_j \hat{e}_r - k_i \hat{e}_z$$
Feshbach resonances

A shape resonance is trapped by a potential barrier.

Feshbach resonance is trapped by a closed channel

\[-\frac{\hbar^2}{2\mu} \Delta \psi_i(\mathbf{r}) + \sum_i V_{i,j} \psi_j(\mathbf{r}) = (E - E_i) \psi_i(\mathbf{r}) V(\mathbf{r})\]

\[
\begin{bmatrix}
-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V_1(r) \\
-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V_2(r)
\end{bmatrix}
\begin{bmatrix}
u_1(r) \\
u_2(r)
\end{bmatrix}
+ V_{1,2} u_2(r) = Eu_1(r)
\]

\[
\begin{bmatrix}
u_1(r) \\
u_2(r)
\end{bmatrix}
+ V_{2,1} u_1(r) = Eu_2(r)
\]
Feshbach resonances

If there is no coupling between the channels, \(V_{1,2} = V_{2,1} = 0 \)

\[
\begin{bmatrix}
-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V_2(r)
\end{bmatrix} u_0(r) = E_0 u_0(r), \quad \langle u_0 | u_0 \rangle = 1, \quad E_1 < E_0 < E_2
\]

If there is a weak coupling, \(u_0(r) \) would not be modified significantly.

The two component solution can then be written as

\[
U \equiv \begin{pmatrix}
 u_1(r) \\
 A u_0(r)
\end{pmatrix}
\]

From the second equation we

\[
V_{2,1}(r) u_1(r) = A (E - E_0) u_0(r)
\]

or

\[
A (E - E_0) = \langle u_0 | V_{2,1} | u_1 \rangle
\]
Feshbach resonances

The first equation is

$$\left[E + \frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} - V_1(r) \right] u_1(r) = AV_{1,2}u_0(r).$$

Again, a Green's function is introduced

$$\left[E + \frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} - V_1(r) \right] \mathcal{G}(r, r') = \delta(r - r').$$

$$\mathcal{G}(r, r') = -\pi \tilde{u}_1^{(\text{reg})}(r_<) \tilde{u}_1^{(\text{irr})}(r_>)$$

$$\tilde{u}_1^{(\text{reg})}(r) \xrightarrow{r \to \infty} \sqrt{\frac{2\mu}{\pi \hbar^2 k}} \sin(kr + \delta_{bg})$$

$$\tilde{u}_1^{(\text{irr})}(r) \xrightarrow{r \to \infty} \sqrt{\frac{2\mu}{\pi \hbar^2 k}} \cos(kr + \delta_{bg})$$
Feshbach resonances

From the Green's function and the first equation

\[
\begin{bmatrix}
E + \frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} - V_1(r)
\end{bmatrix} \mathcal{G}(r, r') = \delta(r - r')
\]

we obtain

\[\psi = \psi_{\text{hom}} + \hat{G} \hat{V} \psi\]

\[
\begin{align*}
\psi_1(r) &= \tilde{u}_1^{(\text{reg})}(r) + A \int_0^\infty \mathcal{G}(r, r') V_{1,2}(r') u_0(r') dr' \\
&\to \infty \quad \tilde{u}_1^{(\text{reg})}(r) - \pi A \langle \tilde{u}_1^{(\text{reg})} | V_{1,2} | u_0 \rangle \tilde{u}_1^{(\text{irr})}(r).
\end{align*}
\]

\[
\mathcal{G}(r, r') = -\pi \tilde{u}_1^{(\text{reg})}(r_<) \tilde{u}_1^{(\text{irr})}(r_>)
\]

introducing \(\delta_{\text{res}}\) as

\[-\pi A \langle \tilde{u}_1^{(\text{reg})} | V_{1,2} | u_0 \rangle = \tan \delta_{\text{res}}\]

\[
u_1(r) \to \infty \quad \sqrt{\frac{2\mu}{\pi \hbar^2 k}} \left[\sin(kr + \delta_{bg}) + \tan \delta_{\text{res}} \cos(kr + \delta_{bg}) \right]
\]

\[= \frac{1}{\cos(\delta_{\text{res}})} \sqrt{\frac{2\mu}{\pi \hbar^2 k}} \sin(kr + \delta_{bg} + \delta_{\text{res}}).\]
Feshbach resonances

We had

\[A(E - E_0) = \langle u_0 | V_{2,1} | u_1 \rangle \]

\[
\begin{align*}
 u_1(r) &= \bar{u}_1^{\text{reg}}(r) + A \int_0^\infty G(r, r') V_{1,2}(r') u_0(r') \, dr' \\
 &\quad \overset{r \to \infty}{\sim} \bar{u}_1^{\text{reg}}(r) - \pi A \langle \bar{u}_1^{\text{reg}} | V_{1,2} | u_0 \rangle \bar{u}_1^{\text{irr}}(r) .
\end{align*}
\]

we obtain

\[
A(E - E_0) = \langle u_0 | V_{2,1} | \bar{u}_1^{\text{reg}} \rangle + A \langle u_0 | V_{2,1} \hat{G} V_{1,2} | u_0 \rangle
\]

\[
\implies A = \frac{\langle u_0 | V_{2,1} | \bar{u}_1^{\text{reg}} \rangle}{E - E_0 - \langle u_0 | V_{2,1} \hat{G} V_{1,2} | u_0 \rangle} .
\]

For \(\delta_{\text{res}} \) we had

\[
-\pi A \langle \bar{u}_1^{\text{reg}} | V_{1,2} | u_0 \rangle = \tan \delta_{\text{res}}
\]

\[
\tan \delta_{\text{res}} = -\frac{\pi |\langle u_0 | V_{2,1} | \bar{u}_1^{\text{reg}} \rangle|^2}{E - E_0 - \langle u_0 | V_{2,1} \hat{G} V_{1,2} | u_0 \rangle}
\]
Feshbach resonances

We had

\[\tan \delta_{\text{res}} = -\frac{\pi |\langle u_0 | V_{2,1} | \tilde{u}_1^{(\text{reg})} \rangle|^2}{E - E_0 - \langle u_0 | V_{2,1} \hat{G} V_{1,2} | u_0 \rangle} \]

Introducing notations:

\[E_R = E_0 + \langle u_0 | V_{2,1} \hat{G} V_{1,2} | u_0 \rangle \]

position of the resonance

\[\Gamma = 2\pi |\langle u_0 | V_{2,1} | \tilde{u}_1^{(\text{reg})} \rangle|^2 \]

width of the resonance

The tangent can be written as

\[\tan \delta_{\text{res}} = -\frac{\Gamma/2}{E - E_R} \]

It is useful to compare \(\Gamma \) with the Fermi golden rule

\[P_{\text{in} \rightarrow \text{fin}} = \frac{2\pi}{\hbar} |\langle \psi_{\text{in}} | \hat{W} | \psi_{\text{fin}} \rangle|^2 \rho_{\text{fin}}(E) \]
Landau-Zener model
Non-adiabatic coupling

The time dependent Schrödinger equation for a diatomic molecule

\[i\hbar \frac{\partial \Psi}{\partial t} = H \Psi = \left[\sum_{\alpha} T_{\alpha} + H_{\text{cl}} \right] \Psi \]

Adiabatic electronic functions

\[H_{\text{cl}} (r, R) \varphi_l (r, R) = E_l (R) \varphi_l (r, R) \]

and adiabatic basis set

\[\Phi_{ln} (r, R, t) = \varphi_l (r, R) \chi_{ln} (R) \exp \left(- \frac{i}{\hbar} E_{ln} t \right) \]

The Schrödinger equation takes the form

\[\left[\sum_{\alpha} T_{\alpha} + E_l (R) \right] \chi_{ln} (R) = E_{ln} \chi_{ln} (R) \]

For a truncated adiabatic basis set, the system of equations could be solved numerically.
Semi-classical treatment

For nuclei, we introduce a trajectory $R = R(t)$

$$H_{el}(r, R) \Psi(r, t) = i \hbar \frac{\partial \Psi(r, t)}{\partial t}$$

$H_{el}(r, R)$ depends on time t because of $R(t)$.

The solution Ψ is now represented as

$$\Psi = \sum_{l} a_l(t) \varphi_l(r, R(t)) \exp \left[- \frac{i}{\hbar} \int E_l(R) \, dt \right]$$

Inserting into the Schrödinger equation

$$i \hbar \dot{a}_l = \sum_{l'} a_{l'} \langle \varphi_l^* \left(- i \hbar \frac{\partial}{\partial t} \right) \varphi_{l'} \rangle \exp \left[- \frac{i}{\hbar} \int (E_{l'} - E_l) \, dt \right]$$
Semi-classical treatment

Comparing with the formula for transition amplitudes in the time-dependent perturbation theory

\[i \hbar \dot{a}_l = \sum_{l'} a_{l'} \langle \varphi_{l'}^* \left(-i \hbar \frac{\partial}{\partial t} \right) \varphi_{l'} \rangle \exp \left[-\frac{i}{\hbar} \int^{t} (E_{l'} - E_l) \, dt \right] \]

We conclude that

\[W = -i \hbar \frac{\partial}{\partial t} \]

\[W_{l' r} = \left(-i \hbar \frac{\partial}{\partial t} \right)_{l' r} = -i \hbar v \langle \varphi_{l'}^* \frac{\partial \varphi_{l'}}{\partial R} \rangle \]

Let us call \(|\langle \varphi_{l'}^* \frac{\partial \varphi_{l'}}{\partial R} \rangle|^{-1} \) as \(\delta R \) (characteristic length)

\[W_{l' r} \approx \hbar v |\delta R| \]

The applicability condition of the perturbation approach

\[|W_{l' r}| \ll |E_l - E_{l'}| = \Delta E_{l' r} \quad \text{or} \quad \Delta E_{l' r} \cdot \delta R / \hbar v \gg 1 \]
Two-state approximation

Adiabatic functions φ_1 and φ_2.

They correspond to solid potential curves.

In the basis of φ_1 and φ_2,

$$
H_{el}(\varphi) = \begin{pmatrix} E_1(R) & 0 \\ 0 & E_2(R) \end{pmatrix}
$$
Diabatic basis

Another pair φ_1^0 and φ_2^0 of electronic functions is introduced as a linear combination:

$$\varphi_1 = \varphi_1^0 \cos \chi + \varphi_2^0 \sin \chi$$
$$\varphi_2 = -\varphi_1^0 \sin \chi + \varphi_2^0 \cos \chi$$

In the basis of φ_1^0 and φ_2^0

$$H_{\text{el}}(\varphi) = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$$

H_{12} and H_{21} as well as φ_1^0 and φ_2^0 depend weakly on R.
Two-state approximation

\[
H_{\text{cl}}(\varphi) = \begin{pmatrix} E_1(R) & 0 \\ 0 & E_2(R) \end{pmatrix}
\]

\[
H_{\text{cl}}(\varphi^0) = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}
\]

We want that \(\varphi_{1,2} = \varphi^0_{1,2} \) far from the region of the strong coupling

\[
\frac{H_{12}(R)}{[H_{11}(R) - H_{22}(R)]} \to 0
\]

We use approximation

\[
H_{12}(R) = H_{12}(R_p) + H'_{12}(R_p)(R - R_p) + \cdots,
\]

\[
H_{11} - H_{22} = \Delta H(R) = \Delta H(R_p) + \Delta H'(R_p)(R - R_p) + \cdots
\]

where \(R_p \) is defined as

\[
\Delta H(R_p) = 0
\]
Two-state approximation

$$H_{el}(\varphi) = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \approx \begin{pmatrix} E_0 + k_1 x & a \\ a & E_0 + k_2 x \end{pmatrix} =$$

$$\begin{pmatrix} E_0 + \frac{(k_1 + k_2)}{2} x + \frac{(k_1 - k_2)}{2} x & a \\ a & E_0 + \frac{(k_1 + k_2)}{2} x - \frac{(k_1 - k_2)}{2} x \end{pmatrix} =$$

$$\begin{pmatrix} E_0 + F x + \frac{\Delta F}{2} x & a \\ a & E_0 + F x - \frac{\Delta F}{2} x \end{pmatrix}$$

$$E_0 = H_{11}(R_p) = H_{22}(R_p), a = H_{12}(R_p) \text{ and } \Delta F = -\frac{\partial}{\partial R} (H_{11} - H_{22}) \bigg|_{R = R_p}$$

Eigenvalues are

$$E_{1,2} = E_0 + F x \pm \frac{1}{2} \sqrt{(\Delta F x)^2 + 4a^2}$$

$$\varphi_{1,2} = \varphi^0_{1,2} \text{ far from the region of the strong coupling}$$
Non-adiabatic functions

Two-component wave function $\Psi(t)$ is

$$\Psi(t) = a_1(t) \varphi_1 \exp \left[-\frac{i}{\hbar} \int E_1 dt \right] + a_2(t) \varphi_2 \exp \left[-\frac{i}{\hbar} \int E_2 dt \right]$$

$$\Psi(t) = b_1(t) \varphi_1^0 \exp \left[-\frac{i}{\hbar} \int H_{11} dt \right] + b_2(t) \varphi_2^0 \exp \left[-\frac{i}{\hbar} \int H_{22} dt \right]$$

$$\dot{a}_1 = i \chi \exp \left[-\frac{i}{\hbar} \int (E_2 - E_1) dt \right] a_2$$

$$\dot{a}_2 = -i \chi \exp \left[\frac{i}{\hbar} \int (E_2 - E_1) dt \right] a_1$$

$$\hbar \dot{b}_1 = a \exp \left[-\frac{i}{\hbar} \int (H_{22} - H_{11}) dt \right] b_1$$

$$\hbar \dot{b}_2 = a \exp \left[\frac{i}{\hbar} \int (H_{22} - H_{11}) dt \right] b_1$$

In the region of interaction (R within δR) we have either

(a) adiabatic non-crossing potentials E_1 and E_2 plus non-adiabatic coupling

(b) crossing zero-order potentials H_{11} and H_{22} plus adiabatic coupling
Transition probability

We assume a to be small and start with $t=-\infty$ and R far from R_p and end up with $t=\infty$ and R again far from R_p.

\[
\begin{align*}
\dot{b}_1 b_1 &= a \exp \left[-\frac{i}{\hbar} \int \left(H_{22} - H_{11} \right) dt \right] b_1 \\
\dot{b}_2 b_2 &= a \exp \left[\frac{i}{\hbar} \int \left(H_{22} - H_{11} \right) dt \right] b_1
\end{align*}
\]

Initially, the system is in state φ_1^0

\[b_1(-\infty) = 1, \quad b_2(-\infty) = 0 \]

At the end $|b_2(\infty)|^2$ give the probability P_{12}^0 of transition from state φ_1^0 to φ_1^0.

\[
b_2(+\infty) = \int_{-\infty}^{\infty} \frac{a}{i\hbar} \exp \left[-\frac{i}{\hbar} \frac{\Delta F v^2}{2} \right] dt = \frac{a}{i\hbar} \left[\pi \sqrt{-\frac{i\Delta F v}{2\hbar}} \right]^{1/2}
\]

Therefore,

\[P_{12}^0 = 2\pi a^2 |\Delta F \hbar v|, \quad \text{if } P_{12}^0 \ll 1 \]
Landau-Zener probability

When \(a \) is large the treatment is not good, \(P_{12}^0 \) could be become comparable or larger than 1.

\[
i \hat{a}_1 = i \chi \exp \left[- \frac{i}{\hbar} \int (E_2 - E_1) \, dt \right] a_2
\]
\[
i \hat{a}_2 = -i \chi \exp \left[\frac{i}{\hbar} \int (E_2 - E_1) \, dt \right] a_1
\]

Solving the system of equations, one obtains

\[
P_{12} = \exp \left[- \frac{2 \pi a^2}{\Delta F \hbar v} \right] = 1 - P_{12}^0
\]

In atomic collisions nuclei go through the coupling region twice. Then the total probability for transition from 1 to 2 would be

\[
P = 2 P_{12} (1 - P_{12}) = 2 (1 - P_{12}^0) P_{12}^0
\]

\[
P = 2 \exp \left(- \frac{2 \pi a^2}{\Delta F \hbar v} \right) \left[1 - \exp \left(- \frac{2 \pi a^2}{\Delta F \hbar v} \right) \right]
\]
Few-body bound and scattering states at low energies (near dissociation)
3-body collisions

- Quantum-mechanical description of three interacting particles
- Nuclear physics
- Chemical reactions A+B+C → AB + C at low energies
- Many experiments observing three-body (and few-body) quantum effects (Efimov states)
- Symmetry of particles should be accounted for if only a few quantum states are populated.
Hyper-spherical coordinates

Three inter-particle distances are represented by two hyperangles and the hyper-radius.

Changing hyper-radius

(θ, φ)=const
Jacobi coordinates

* Three different arrangements: three sets of coordinates
Mass-weighted Jacobi coordinates

\[\vec{R}_{CM} = \vec{R}_{CM,0} \]
\[\vec{r}^k = d_k^{-1} \vec{r}_0^k \]
\[\vec{R}^k = d_k \vec{R}_0^k \]

\[M = \sum_{i=1}^{3} m_i \]
\[\mu = \sqrt{\frac{\prod_{i=1}^{3} m_i}{M}} \]
\[d_k = \sqrt{\frac{m_k}{\mu} \left(1 - \frac{m_k}{M}\right)} \]

Arrangement \(j \)
Arrangement \(i \)
Arrangement \(k \)

Space-fixed "SF"
Hyperspherical coordinates

\[
\vec{R}_{CM} = \vec{R}_{CM,0} \quad \vec{r}^k = d_k^{-1} \vec{r}_0^k \quad \vec{R}^k = d_k \vec{R}_0^k
\]

\[
\rho^2 = (r_X^k)^2 + (r_Y^k)^2 + (r_Z^k)^2 + (R_X^k)^2 + (R_Y^k)^2 + (R_Z^k)^2
\]

\[
r_1(\rho, \theta, \phi) = \frac{d_1 \rho}{\sqrt{2}} \sqrt{1 + \sin \theta \sin(\phi + \epsilon_1)}
\]

\[
r_2(\rho, \theta, \phi) = \frac{d_2 \rho}{\sqrt{2}} \sqrt{1 + \sin \theta \sin(\phi + \epsilon_2)}
\]

\[
r_3(\rho, \theta, \phi) = \frac{d_3 \rho}{\sqrt{2}} \sqrt{1 + \sin \theta \sin(\phi + \epsilon_3)}
\]

\[
0 \leq \rho < \infty, \quad 0 \leq \theta \leq \frac{\pi}{2} \quad \text{et} \quad 0 \leq \phi < 2\pi
\]

\[
\epsilon_3 = 2 \arctan \left(\frac{m_2}{\mu} \right)
\]

\[
\epsilon_2 = -2 \arctan \left(\frac{m_3}{\mu} \right)
\]
If two or three particles are identical, one has to account for bosonic or fermionic nature of the particles.

Hyperspherical coordinates are well adapted for it.
$C_{3v} / D_3 / S_3$ symmetry group

* Group of permutation of three identical particles, S_3:

$$S_3 = \{E, (12), (23), (13), (123), (132)\}$$

* S_3 is isomorphic to the group of rotations of a triangular prism

$$D_3 = \{E, C_{2a}, C_{2b}, C_{2c}, C_{3d}, C_{3d}^2\}$$

* and to the molecular point group C_{3v} of

$$C_{3v} = \{E, C_3, C_3^2, 3\sigma_v\}$$
Types of wave functions
Irreducible representations

* A_1 is a totally symmetric wave function

* A_2 changes sign under any binary permutation

* E is a 2-dimensional irrep.

\[(123) E'_\pm = e^{i\omega} E'_\pm\]

\[(12) E'_\pm = E'_{\mp}, \quad \omega = 2\pi/3\]
A\(_1\), A\(_2\), and E states

- **A\(_1\)** is totally symmetric wave function.
- **A\(_2\)** changes sign under any binary permutation.
- **E** is a 2-dimensional irrep.
Schrödinger equation in hyperspherical coordinates

* Hamiltonian

\[H = T_\rho + H_{\text{ad}} \]

\[T_\rho = -\frac{1}{2\mu} \frac{\partial^2}{\partial \rho^2} \]

\[H_{\text{ad}} = \frac{\Lambda^2 + 15/4}{2\mu \rho^2} + V \]

\[\Lambda^2 = -\frac{4}{\sin(2\theta)} \frac{\partial}{\partial \theta} \sin(2\theta) \frac{\partial}{\partial \theta} - \frac{4}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} + \frac{2J_x^2}{1 - \sin \theta} \]

\[+ \frac{2J_Z^2}{1 + \sin \theta} + \frac{J_Y^2}{\sin^2 \theta} + \frac{4i \cos \theta J_Y}{\sin^2 \theta} \frac{\partial}{\partial \phi}, \]
How to solve it

* Adiabatic separation of the hyper-radius and hyperangles

\[H = T_\rho + H_{\text{ad}} \]

\[H_{\text{ad}}^{\rho=\rho_j} \varphi_{a,j}(\omega) = U_a(\rho_j) \varphi_{a,j}(\omega) \]

\[H_{\text{ad}} = \frac{\Lambda^2 + 15/4}{2\mu \rho^2} + V \]

* An idea similar to the Born-Oppenheimer separation of electronic and nuclear coordinates

\[[\hat{T}(\rho) + U_a(\rho)]\psi_{a,n}(\rho) = E_n^{\text{vib}} \psi_{a,n}(\rho) \]
H_3^-
Hyperspherical adiabatic approximation is inaccurate

- Non-adiabatic couplings between \(U_a(\phi_a) \) should be accounted for.

- The vibrational wave function \(\psi(\rho,\theta,\phi) \) as the expansion

\[
\psi(\rho,\theta,\phi) = \sum_k y_k(\rho,\theta,\phi) c_k
\]

- in the basis of non-orthogonal basis functions

\[
y_k(\rho,\theta,\phi) = \pi_j(\rho) \varphi_{a,j}(\theta,\phi)
\]

\[
k \equiv \{ a, j \}
\]

- where \(\pi_j(\rho) \) are some convenient basis functions and \(\varphi_{a,j}(\theta,\phi) \) are hyperspherical adiabatic states calculated at fixed hyper-radii \(\rho_j \), with the corresponding eigenvalue \(U_a(\rho_j) \); \(V(\rho,\theta,\phi) \) is the molecular (three-body) potential.

\[
\sum_{i',a'} \left[\langle \pi_i | \hat{T}(\rho) | \pi_{i'} \rangle \mathcal{O}_{i,a,i',a'} + \langle \pi_i | U_a(\rho) | \pi_{i'} \rangle \delta_{a,a'} \right] c_{i',a'}
\]

\[
= E \sum_{i',a'} \langle \pi_i | \pi_{i'} \rangle \mathcal{O}_{i,a,i',a'} c_{i',a'},
\]

\(\mathcal{O}_{i,a,i',a'} = \langle \varphi_a(\rho_i;\theta,\phi) | \varphi_{a'}(\rho_{i'};\theta,\phi) \rangle \)
H$_2$D$^-$ and D$_2$H$^-$
H+H+H \rightarrow H$_2$+H recombination

Diabatic 2-channel 3-body potential for H$_3$.

$$V_{H_3}(\rho, \theta, \phi) = \begin{pmatrix} A & C e^{i\phi} \\ C e^{-i\phi} & A \end{pmatrix}$$

$$A(\rho, \theta, \phi) = [V_1(\rho, \theta, \phi) + V_2(\rho, \theta, \phi)]/2$$

$$C(\rho, \theta, \phi) = [V_1(\rho, \theta, \phi) - V_2(\rho, \theta, \phi)]/2$$

Obtained from ab initio calculation of 12A' (V_1) and 22A'(V_2) electronic states of H$_3$. Hyperspherical adiabatic energies obtained for the uncoupled and coupled H$_3$ two-channel potential. Crossings in the above figure turn into avoided crossings below.
H_3 resonances

<table>
<thead>
<tr>
<th>${\nu_1, \nu_2^l}$</th>
<th>E_r, τ; this work</th>
<th>E_r, τ; Ref. [8]</th>
<th>E_r, τ; Ref. [9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0, 0^0}$</td>
<td>-3.85, 13</td>
<td>…</td>
<td>-3.79, ~ 3</td>
</tr>
<tr>
<td>${1, 0^0}$</td>
<td>-3.11, 13</td>
<td>…</td>
<td>-3.05, ~ 3</td>
</tr>
<tr>
<td>${2, 0^0}$</td>
<td>-2.4, 14</td>
<td>…</td>
<td>-2.37, …</td>
</tr>
<tr>
<td>${3, 0^0}$</td>
<td>-1.8, 14</td>
<td>…</td>
<td>-1.75, …</td>
</tr>
<tr>
<td>${4, 0^0}$</td>
<td>-1.2, 16</td>
<td>-1.24, ~ 15</td>
<td>-1.19, …</td>
</tr>
<tr>
<td>${5, 0^0}$</td>
<td>-0.7, 18</td>
<td>-0.47, ~ 17</td>
<td>-0.70, …</td>
</tr>
<tr>
<td>${0, 2^0}$</td>
<td>-0.2, 130</td>
<td>…</td>
<td>-0.26, ~ 4.5</td>
</tr>
</tbody>
</table>
On Efimov states (1970)

\[\tan \delta \sim \frac{k \to 0}{\frac{\pi}{\Gamma(l + \frac{1}{2}) \Gamma(l + \frac{3}{2})} \left(\frac{a l k}{2} \right)^{2l+1}} \]

\[k / \tan (\delta_0) = -\frac{1}{a} + r_0 k^2 / 2 \]

- \(r_0 \) – effective range of 2-body potential, \(a \)- 2-body scattering length. If \(r_0 \ll a \), the wave function in the region \(r_0 \ll r \ll a \) does not depend on \(r_0 \) or \(a \).

- Effective 3-body potential in the region is \(\sim 1/r^2 \). Thus, 3-body bound states may exist even if there is no 2-body bound states. When \(a \to +\infty \), the number of 3-body bound states \(\to \infty \).
When \(a=\infty \), the hyper-radial equation is

\[
\left(-\frac{d^2}{dR^2} - \frac{1}{R} \frac{d}{dR} + \frac{s_i^2}{R^2} \right) F_{s_i}(R) = EF_{s_i}(R)
\]

\(s_i \) is a transcendental constant. The lowest \(s \) is \(s_0 = 1.00624i \).

Spectrum for \(s_0 \) is

\[
E_N = -\frac{1}{R_0^2} e^{-2\pi N_1 |s_0|} \exp \frac{2}{|s_0|} \left[\arccos \frac{\Lambda R_0}{|s_0|} - \Delta \right]
\]

When \(a \neq \infty \), the spectrum:

\(g \) is the interaction parameter, such that at

\(g=1, \ a=\infty \)
Observation of Efimov states

No direct observation. Kramer et al. see the increase of the 3-body recombination rate very close to 3-body dissociation limit as predicted by theory (Esry, Greene). This is an indirect evidence for Efimov states.
Observation of Efimov states:

Theory

Experiment
Collisions between Tunable Halo Dimers: Exploring an Elementary Four-Body Process with Identical Bosons

F. Ferlaino,1 S. Knoop,1 M. Mark,1 M. Berninger,1 H. Schöbel,1 H.-C. Nägerl,1 and R. Grimm1,2

1Institut für Experimentalphysik and Zentrum für Quantenphysik, Universität Innsbruck, 6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

(Received 28 March 2008; published 9 July 2008)

We study inelastic collisions in a pure, trapped sample of Feshbach molecules made of bosonic cesium atoms in the quantum halo regime. We measure the relaxation rate coefficient for decay to lower-lying molecular states and study the dependence on scattering length and temperature. We identify a pronounced loss minimum with varying scattering length along with a further suppression of loss with decreasing temperature. Our observations provide insight into the physics of a few-body quantum system that consists of four identical bosons at large values of the two-body scattering length.
Another example

Complex absorbing potential is placed at large hyper-radius to absorb the dissociating outgoing wave flux.

\[U_a(\rho) \rightarrow U_a(\rho) - iA(\rho - \rho_i)^2 \]