Adiabatic or
Born-Oppenheimer
approximation



Molecular Hamiltonian

IfI:T f ‘A/(r R) R and r are vectors
here.
W, r for electrons
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Adiabatic separation

[t is difficult to solve the equation X
HY, (r,R)=EY, (r,R)

An approximation is used. It is based on the fact
that electrons move much faster than nuclei.

The kinetic energy term for the nuclear motion is
much smaller than the other terms.

H=T +T +V(r,R)
We separate nuclear and electronic motions and

2 2
solve the Schrodinger equation for the electronic 7 :_h_ 8_
degrees of freedom at fixed nuclei. ' 2U < 547
The vibrational part of the Hamiltonian will be 5 12
treated as a perturbation. T —— Z 0
! 2M,; 6R’



Adiabatic separation

B-O approximation: T, is small. So, we split ST 4
| pp R P H—HO+ TR
H in two parts A A A
HOZT,,-I-V(r,R)
And, as a first step, we obtain “adiabatic”
molecular states ¢ (R,r) and energies for
fixed R, A0, (R, r)=e,(R)q,(R,.r)
n=1,2,---

second step: W, (,R) is represented as an
expansion in the basis of ¢ (R,r)

w(r,R)=2.¢,0,(R,r)=2. ¥, (R)¢,(R,r)
In a complete form (with continuum

states)

lI”“’(r,R):; W,(R)@,(R,r)+] W (R)g(R,r)de




Adiabatic separation

‘P“(r,R)=; W, (R)@,(R,r)+] W(R)g(R,r)de

\ P
discrete continuum states

Using simplified notations

(7 R)= 2, (R)|n(R)

Plugging the expansion in the original Schrodinger equation
[H +T,]¥, (r,R)=EWY_(r,R)

multiplying it with <m(R)| and integrating over r we obtain

Tp+e,(R)—E|Y, (R)=2 A, Y, (R)

where non-adiabatic couplings A are

) A’j—i<m<R>|@%|n<R>>i—<m<R>|TR|n<R>>



Born-Oppenheimer approximation

A

[H,+T, ¥, (r,R)=EW_(r,R) Hocpn(Rf,r)T;(R)cpn(Rf,r)
n=12 ...

totrR le | >

Tpte, (R)-E|Y,(R)=2 A, Y, (R)

A= g RIS (R) 55— m R (R)

The two above equations are exact if the whole (discrete and
continuum) spectrum is included, i.e. a complete basis ¢ (R,r) is used.

If A are small one can truncate the basis. If basis is truncated to one
function, it gives the Born-Oppenheimer approximation.

T+e, (R)|Y) =E) ¥ H,,(R,.r)=¢,(R)q,(R,r)




Born-Oppenheimer approximation

T.+e, (R)|Y) =E) ¥\ H,(R.r)=¢,(R)q,(R,r)

Energies E’ andstates ¥ (r,R)~Y¥’ (R)p (R,7)

n

are called adiabatic or Born-Oppenheimer
solutions of the molecular Hamiltonian.

Molecular
The BO approximation is valid only if terms

[ ¥ ALY dR<|E) —E).

[t is similar to the applicability condition for
the perturbation theory.




Example of potential surfaces
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R (units of a )



How to obtain vibrational
levels for a given
potential energy surface?

my my my

T .+e (R)Y' =E° ¥°




Normal coordinates

Normal mode and harmonic oscillator
approximation:

Near a minimum a miltidimensional surface can
be approximated by a paraboloid.

Consider €(R) near it minimum R, New
coordinates x=R-R

Near x=0 we use the Taylor series for €(R)

. 1 o 1
em('x):gm(o)-l-E%: axiang xi'xj:em(o)-l-azjl kij'xi'xj
and for T,
1 dx, dx; 1 o with m,=m,

T, =— m.. - XX
K 2; iTqr dr o~ it

T
—1

dx

dt

di

dt

where G=M"1




Normal coordinates

The classical Hamilton function for vibrational motion: H=T+V:

Hw.bZTR+V=8m(O)+%Z(m X, X +k.x.x )

lJlJ it j
ij

New coordinates Q =, Q
such that T 1 Q Q
R~ b At / diagonal matrix
and . 1 2 T
e, (X)=e,(0)+5 2 1,0 =¢,(0)+ gQ
T _1jdx TG_l dax ™!
=5 ” ) LG L=I




After some manipulations

Classical Hamilton function

L'G 'L=I

L'=L"'G

L'"KL=A

L'GKL=A

Il

GKL=LA

we end up with the eigenvalue problem for matrix GK=4: AL =L A

Al=n1
+A Qf]



Near equilibrium

In “normal” conditions, molecules are in

their ground electronic BO state ¢ _(R,r) \\; -
]

and vibrational state can be approximated | £

by a harmonic oscillator state.

Close to the equilibrium, we can use normal

coordinates and write
e (R)=e, (Ry)+5 3 00

. . nop?
We can also neglect rotation of the molecule. Then T,=-2, ?88 > and the
Hamiltonian becomes | 7 ' Q
H~L S 0r0i-1 2 e, (R
27 0Q:
. : £(R)
where Q_are normal coordinates. Energies are
Z 1 e N Dv(.ﬁéohﬂ..‘
E =¢ +h ) w |n +— ~dha®-
0(n,,ny-) m — A ] EO(R)

and wave functions

|m;n13n2.”>:(pm(R0,r)H IIInr<Qr)




Molecular symmetry
considerations



Time-independent observables

Observables evolving in time:
O(t)=<y(1)|0]y(t)>
V(t)=vy exp(-iEt/h) with Hy =Ey_
We need O independent on t. If
Oy =wy_then O(t)=<y |O|y >
and it is constant in time. It is equivalent to [Q,H]=0.

Each state y_ is then characterized by E and ® (good or conserved

quantum numbers).

[f the system (molecule) has a certain geometrical symmetry, each
symmetry operation (that does not change energy, [0,H]=0) can be
considered as an operator Q — it gives an additional good quantum

number .



Symmetry of a diatomic molecule

R (internuclear distance) is fixed.

Symmetry of electronic wave
functions:

(1) Translation in space.

O=T; w=p (linear momentum)

(2) Rotation in space.
O=R;0=L(L=)1 )

(3) Rotation about the molecular Z
axis.

O0=R; m=A (projection of angular
momentum on Z)

(4) Reflection through a plane
containing Z.

O=6; 0=+/— (sign of electr. state)

C_, symmetry group

=
f Reflection

/A
/ A?}“‘\iB/Z

(1-4) correspond to the
coordinate part of the symmetry

group

(5) Symmetry with respect to
exchange of electrons - total spin

S. S=ZS;'

Standard notations

28+1A+/— Molecular
4\,
Examples '+, 3T =




Homonuclear molecule

R (internuclear distance) is fixed.

Symmetry of electronic wave
functions:

(1) Translation in space.

O=T, w=p (linear momentum)

(2) Rotation in space.

O=R; w=L (angular momentum)
(3) Rotation about the molecular Z
axis.

O=R ; ®=A (projection of angular
momentum on 7))

(4) Reflection through a plane
containing Z.

O=@; ®w=+/— (sign of electronic
state)

D_, symmetry group

AY
* e
Inversion .
o
A Z
IO“ —
o w(r) = (1)
_}

= ly(r)
(5) Inversion of electronic state
O=I; w=g/u

(1-5) corresponds to the coordinate
part of the symmetry group

(6) Total spin S.

Standard notations

Molecular 28+1Ag/u+/_
ferm Examples 'X *, *IT -




Symmetry of a diatomic molecule

If the interaction between spin and
orbital ang. momentum 1s strong.

(1) Translation in space.

O=T; ow=p (linear momentum)
(2) Rotation 1n space.

O=R; ®=] (total angular
momentum, J=L+S)

(3) Rotation about the molecular Z
axis.

O=R ; ©=Q (projection Q=A+X of

angular momentum J on Z)

(4) Retlection through a plane
Containing 7. Standard notations

+/- +/-
O=@; ®w=+/— (sign of electr. state) 2o Qg/u




Diatomic molecule: H, example

We will use the Born-Oppenheimer approximation

A hz
el _ 2 2
H'= EEAVQ+VQP-
5 1 1 1 1 1 1
e e
rni Tg1 Tay Tg T'p R

1. LCAO-MO approximate adiabatic states

1

e I e
H, molecule - ;

LCAO-MO means linear

P (1)= 1)+ 1 .
1) \/2—|—2SAB((|)A< (U First electron combination of atomic orbitals

5 (2)= 1 (¢A(2)+¢B<2)>A/Second electron

V24258,

rmapﬁ Atomic orbital
integral on atom A

Atomic orbital
on atom B

LCAO-MO can represent (but
overestimates) the possibility for
dissociation to H+H".

Electron spin
D(ri,ry,81,8) = Oy(ry) - Dg(rr) )/‘ functions

X" (x~ )= x"2)x ()]

ﬁf(singlet) state,

B

oMo _ _ | Improvement:
* 24254

x [a(1)a(2) +b(1)b(2) +a(1)b(2) +a(2)b(1)]

I

Ps(ry,r1) = c3la(1)b(2) +a(2)b(1)

Variational +ala(Da(2) +b(1)b(2)]]
parameter



Diatomic molecule: H, example

& M2 €2

2. Heitler-London approx. adiabatic states H, molecule

(I)a,S:C<(I)A<1)¢B<2)i¢A(2)¢B(1))
C:[Z ( I iSZB)];Hz\ Normalization

Overlap constant
integral ‘

*H-L approximation describes well the H+H A
dissociation but not H+H".

%The term for H+H*, in principle, can explicitly Eg/ev b
be added (with parameter A) into the total
wave function. At this stage, the two 3|
approximations become equivalent. T
*Further improvements: include more atomic e S E(H)
states (2-100 or more) : ¢

'LCAO-MO .
P(ry,rr) = @)D, Pri)= Zﬂkqf?k

k=1

H.-L.
O(ri,r2) =Y cigi(gi(2)

ik

improved H.L.

Exact

Singlet states, for simplicity 0.5 1 15 2 R/A



More advanced methods

In modern calculations,
one uses more advanced
methods such as
*Hartree-Fock method-HF
or self-consistent field - SCF,
*Multi-reference
configuration interaction
(MRCI),

*Coupled-cluster methods -
CCSDT, CCSD(D),
*Density-functional theory
- DFT

*Mgller-Plesset
perturbation theory - MP2,
MP3,

*others.

System with noninteracting electrons:
If we neglect electron - electron repulsion:

kinetic energy and potential energy of electron i

H =} hi) h(i)y,(X,) = ij&(xl)

spin drbitals

W \PHP = pyHP E:s,\+s.,.+'“+£,-;f

spin orbital energies

Spin orbital: spin up
spatial coordinate goliiitocralae
X (r)o(ew)
X =/r w} x(X) = or
() B(w)

spatial orbital \spin down

Hartree Product:

Because H is sum of one-electron Hamiltonians, a wave function is a simple product
of spin orbital wave functions for each electron (many electron wave function):

‘Pﬁplxls X3y - oo Xy} = 20X )2,(X5) - - xadXn)

eigenfunction of Hamiltonian



Slater determinants

The Hartree product does not satisfy the Pauli antisymmetry principle.
The way to make the wave functions to be antisymmetric:

WXy, Xo) = 2 (X1 )y (X2)
T?f(xn Xy} = X;(xz)}fg(xl)

Wixy, x3) =2 ”2(1:(1‘(1)3{;(312) — %, (x1)x.(X5))

The wave function vanishes if both electrons occupy the spin orbital. The wave
function is antisymmetric with respect to the interchange of the coordinates of
the two electrons.

Antisymmetric wave function can be written as a determinant:

spin orbitals spatial orbital spin up
Wiy xg) = 2712 A0 B iz () x,é.)z,(xz)) -
Xa(X2)  xi(%5) () (w)
lization fact X(X) = o2
W)

X =r, w}

spin down



N-electron system

LS SR

/

normalization factor

%X} 7,(x4)
vil(x2)  7i(x3)

%(X) 1,(Xn)

Yi(X1)
Ze(x2)

(X

N electrons occupying N spin orbitals
without specifying which electron is in

/ which orbital

rows: electrons
columns: spin orbitals

Another notation that only shows diagonal elements of the determinant:

(X, Xg, .- -, Xy} = IX:‘[KI}ZJ(xZ) 71099 )

Y(xy, Xy, .00, Xy) = 'Z.Xj = B

X =r, w}

'ixnn'l

xm...>



Ground HF state

For two-electron system: |y y — tar2d

V2 yi(%) = ¢ (Na(w)

Wod = s> = 1Ty —H—* 1) =v,0)

with ¢y spin with Bspiﬂ

11 =P 12 =W,

For N-electron system:

My =l * < @™ * X

The number of different single determinants that one can form from N
electrons and 2K spin orbitals: (the HF ground state is just one of these)

2K\ (2K)!
(N - NI2K — N)!

X =r, w}



Excited HF state

A singly excited determinant is the one in
which an electron occupying the ) _spin-

orbital in the HF ground state is promoted to

a virtual spin orbital ) :

S = Dps s g Iy

X =r, w}

¥

IS = | = & < it =

=z Xok
%
Xs
e Xy
A -
xrul

o xn

.
_+ Ib

- Xa

.

o+ X»

€ Xy

: XN)



How to solve the
electronic part of the
equation?

Hyo,(R,,r)=¢,(R)g, (R, 7)




Doubly-excited HF state

— x.
# X,
Wod = axa dato 18> — » P = s e s

All C, " determinants can thus be classified as either the HF ground
state or singly, doubly, triply, ..., m-tuply excited states.

X =4r, @}



The use of excited determinants as N-
electron basis functions:

all possible determinants can be
described by reference to the HF

/ determinant

Oy =col¥od+ X clf¥od+ 3 PR+ Y R[YES+
a<pb n<b<c¢
y<3s r<s<t

the exact wave function for any state of the system

Configuration interaction - CI. H (I) — E (I)

Full CI MxM eigenvalue problem
Multi-reference CI - MRCI - -
Hc=Ec

X =r, w}



Example: HF orbitals of C,N-

o' HF orbitals
occupied in the ground state




Atomic orbitals for comparison

ve 02 S Q 003%
velso w&e%&&

&&%%*&%

=
=

\V)
J‘\




Example: HF orbitals of C,N-

o' HF orbitals, occupied in the ground state




Example: HF orbitals of C,N-

© HF orbitals, doubly-degenerate
occupied in the ground state




C.N" ground state slater determinant

With spin With [), spin

a

! /

Y1.1(r1) P1.1(r1). Y9 1(r1) Pg.1(r1)  Y1.2(r1)..  Y2.2(rp)

¥1.1(r2) ¥1.1(r2)...99.1(7r2) Yg.1(r2)  v1.2(r2)..  vY2.2(r2)

Y1.1(r26)  Y1.1(re6).--¥9.1(r26) Yo.1(7

MRCI calculations
D> =co|¥od+).
ra

26) ¥Y1.2(r26) ¥2.2(r26)

it ), e
a<pb
¥ <S

Py o(ry) ¥1.3(r1) ¥y 3(r1) Y2 3(r1) g 3(r1)

Yo.a(re)  ¥1.3(r2)  P1.3(r2)  Y23(r2)  ¥2.3(r2)

ba.2(ree) v1.3(r2e) v¥1.3(ree) Y2.3(r2s) v2.3(r2e)

Y+ Y R+

a<b<g
r<s<t{

Hc=Ec¢



Many codes available to perform
quantum chemistry calculations

Bound electronic states:

https://en.wikipedia.org/wiki/List_of quantum_chemistry_and_solid-state_physics_software
*Molpro
*Columbus
*Gaussian
*and many others

Electron-scattering codes:
*UK R-matrix
*Complex-Kohn variational method


https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

Rotational states of
molecules



Rotational Hamiltonian

Approximation: Solid body with atoms rigidly fixed - rigid
rotator or a top é;;

1
*Classical kinetic energy:  I'= 5 Z 1,629,
i)k
*¥Tensor of inertia  Iz= 2, m (x38,, — x,%)

'—Zmy,t: Zm(xz-}-zﬂ) ——Zmyz

> my*+ 2% — Y mxy — ) mxz
1;k=( )
— > mzx — Y mzy > m(x*+ y?)

* * ¥k ¥k ¥

lab-frame

*Instantaneous angular velocities: €.



Rotational Hamiltonian

*The body-frame axes & 1, and C are along principal axes of
inertia.

J2 J2 J-Z
T= 21, Qu+ [, Q +1 Q= | 542042
2\1, 1, I,

*Operators J°, J,and ]C commute

with each other.

lab-frame



Spherical top molecules
5 " (7§ i "f%) I =1=I=I

2 \T4 TTg Vi

Examples:
T I* Ty SF_, CH
H= 5 = wa’(]—[—l) :

Each energy is (2/+1)-times
degenerate over projections M
on a laboratory axis (say, z) and
(2/+1)-times degenerate over
projections k on a molecular

axis (say, ().




Symmetrical top

—~ p3 '}'2 '}2 }“2 _

H=—-(._;, A __c_) [ = %]
2 A + ]B + IG A B C

-~ e o ~ox 4, HZ 72 B2 <o . A /[ ] 1 \ 32
“’:IA( §+ 9 ] 210 L UA + 5 ’C IA* T
h2 fi2 ] 1

E=-2"gu+1 ( ~ )Jz“

T VD3 P

*Each energy is (2/+1)-times
degenerate over projections M
on the z-axis and degenerate
with respect to sign of k.
*Each rotational state is
characterized by quantum
numbers J, k, and M.




Euler angles

*Any rotation of a coordinate system (xyz — xy'z’) can
described by three Euler angles, o, 3, and Y.

* arepresents a rotation around the z axis,
% [ represents a rotation around new y. axis,

¥ Yy represents a rotation around new ZZZZ' axis.

be



Rotational Wigner functions

*Suppose, we have an arbitrary state |[M'> = ‘P]M,(r') having a

definite angular momentum J and a definite projection M’ of the
momentum on an axis z'.

*Suppose we want to write this state in a coordinate system (xyz)
rotated with respect to (x'y'z’) by the three Euler angles.

*The transformation is written as

J

M= ), |IM (UMM ")

M=—-J
J

':I)‘JM;' (8” ?i’, c']:—__- 2 JH (8’ (P, 0') DHH;(G, B, "r)

M=-J ﬁ

Wigner functions

Dy (@5 By ¥) ==~ ¥%d% 0, (B) e *H'T



Eigenstates of symmetrical top

xEigenstates of symmetric top are eigenstates of J?, J , and ]C :

*We can consider these eigenstates in the two coordinate systems,
lab frame - xyz and molecular frame - nC.

— Z wJMD]{/Ik(OLB Y)

Z 1P.Ik( Mk aﬁY))

k=—1J

*The state Vo, should have a definite k, because it is an eigenstate
of operator I
*Therefore:

Yoan =Wy | D JJWk(OLBY)*

*And y, is constant, i.e. it does not depend on Euler angles.

2J+1 ( (OL [3 ) ) Eigenstate of symmetric top
g J'E Mk Y molecules

JMk




Asymmetrical top
ﬁ:“(Jg +J2 +?2) I 2 #1
ﬁll’.r = Epp;, Yy = ; Chsn
Y (k| H [ JR') — Edue)cer =0

|(Jk| H | JE'Y — Ebpir | =0




Asymmetrical top

TRl O A LN I n
H=T(75-+ + 7= ) Hop = BUN + B?N] + BON;
A

B 1+ B2 | B 1+ B2 B — B2) | .
Hmt: il Nz_" (8(3) _ —; )N3 4 (N—Zk—l_NE)
where N, = N, £iN, and N* = N? + N2 + N?

INF 4 1115 o
.*'»{Hr*iv;-'**(m ﬁ?f) — { 8?’[2 :| [Dg'%7K+~(DE:B: HJ))]

*

(N,k,m|N*|N,k,m) = N(N +1),
(N, k,m|Nj|N,k,m) = k*,
(N,k —2,m|N2|N,k,m) = (N, k,m|N*|N k- 2,m)
= V[NN+1)— (k= 1)(k=2)][N(N + 1) — k(k — 1)]




Long-distance interaction of two
charge distributions



Electrostatic potential of a charge

distribution
M
A 7
e R ®  Electrostatic potential at point M:
o U
A >

4 7TEO j ‘R V. |
Assumption: M is far from distribution A

R|>>|7]



Electrostatic potential in a form of
multipole moments

b Laplace expansion
= z L
0 R ] ] r
0, — = —| P,|cosd.
Ty ke(x) Pl
(R 4% Zq+—2qrcos€+—2qr3cosze 1+...
0
Ly_/ \ |\ }
| | |
qtot(A) dz(A) Esz(A)

8

general form of the
Laplace expansion r—r'|

—1)m—= e Y, (0, 0)Y™M(E, ')
£=0



Energy of interaction of two charge
distributions

B qj(;,) Potential energy of interaction:
i i€B
qi @A Zq+ Zq 1 qu.r? 2i +...

Simplification: ¢ varies weakly near B

2
VfZ%) +Z(qr V<I> ) Zq, >, xjxkaxaaxkcb(o)+...
’ J

i Jk=x,y,z

\_Y—/ \ Y ]\ y /
q,c| Bl ~d(BI-E|0| >, 0,86%/0]

I k=x,y,z




Electrostatic potential
Multipole moments

(0,0) : charge-charge interaction is 1/R
(0,1) : charge-dipole interaction is 1/R?
(1,0) : dipole-charge interaction is 1/R*
(1,1) : dipole-dipole interaction is 1/R?
(0,2) : charge-quadrupole interaction is 1/R’

(LyLg): 2%4_2% _pole interaction is Rt Lyt



Electrostatic potential
Multipole moments

+L
1 = ) L gM(LA)LB> M ~—M
| Z— —1/7

. . +1 .
tensorial notations: Q" =d *id

L_ :min( L, LB) (L= (~1)4(L +L,)!

L,—M)(L,+M)(L,+M)!(L,—M)!



Multipole moments

1 L, gy (L, Lg) B
V is= Z Z (_I)B A;zl—i-Li—i-LBB QZQLBM

The field of Quadrupole moment
dipole moment Qi =Y arars — [711%6:)
b= Z q; T; . !




Atomic orbitals and multipole moments

- B
.*‘
.06 @ @
5
7s

ute $02¢ 003% 003%
vekso w&t%am

&&%%*&%

.
=

d) ,
J‘\




Multipole potential as a
perturbation

E=E, +E, +E +E+...
[P =0 ), )P+,

In the first order, diagonal elements of V , 1.e.

permanent multipole moments of electronic states
+L<
Z gu(Ly, Ly) QM Q—M
4 R1+LA+LB L, =L,

—L

IA/AB: Z

L, ,=0 M

(_1)§(LA+LB)!
L,—M)!(L,+M)!(L,+M)!(L,—M)!

gM(LA’LB):\/(

example: 2 atoms in a state S: E' =0

example: 2 atoms in a state p : E' =C /R’



Second-order perturbation
In the second order, non-diagonal elements m

are always present for dipoles. It U
corresponds to an interaction of induced - R
dipole~induced dipole (L,=L,=1) ) 5

o Z|<5U |VAB|5U2>|2:
m;énE E

|Z g, (L, 1P 10V 1w’ (P |Q1M|s” )|

E° —EO A+ ES —ES, )

P

m#+n
C, , _
—_° van der Waals interaction
R6

Interaction of induced quadrupole~induced dipole: C/R®

Interaction of induced quadrupole~induced quadrupole: C, /R
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