Project 1, chemical reaction

$$\frac{dn_A}{dt} = -k_{AB}n_An_B + k_Cn_C$$
$$\frac{dn_B}{dt} = -k_{AB}n_An_B + k_Cn_C$$
$$\frac{dn_C}{dt} = k_{AB}n_An_B - k_Cn_C$$

na=na+dt*(-kab*nao*nbo+kc*nco)
nb=nb+dt*(-kab*nao*nbo+kc*nco)
nc=nc+dt*(+kab*nao*nbo-kc*nco)

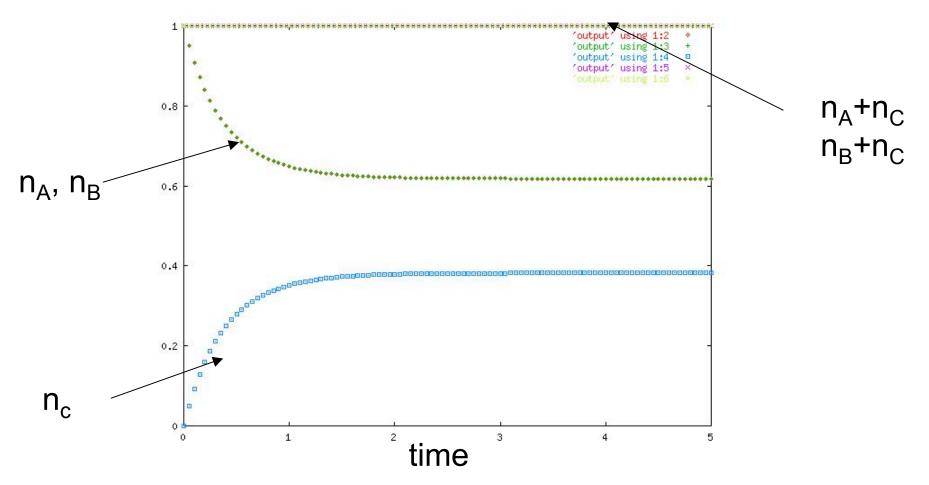
- $n_A + n_C$, $n_B + n_C$ constant
- Equilibrium at $n_A n_B / n_C = k_C / k_{AB}$

Project 1, plotting the results

Plotting results with gnuplot:

gnuplot> set term jpeg Terminal type set to 'jpeg' Options are 'small size 640,480 ' gnuplot> set output 'react.jpg' gnuplot> plot 'output' using 1:2,'output' using 1:3, 'output' using 1:4, 'output' using 1:5,'output' using 1:6 gnuplot> quit

Project 1, Results for $n_A = n_B = 1$, $n_C = 0$ at t = 0



- Run confirms $n_A + n_C = 1$, $n_B + n_C = 1$ for all times
- Final state agrees with $n_A n_B / n_C = k_C / k_{AB}$
- dt=0.05 adequate for $k_{AB}=k_{C}=1$ (reaction time ~ 1)

Next project.... Damped, driven oscillator

• Start with the case where q=0, $F_D=0$

$$\frac{d^2y}{dt^2} + \omega_0^2 y = 0$$

- y(t)= Acos $\omega_0 t$ + Bsin $\omega_0 t$
- Initial conditions, $A=y_0$, $B=v_0/\omega_0$
- Energy (kinetic + potential should be conserved!

Compare with analytical to verify code, also test energy conservation!

Code prog3.f provide starting point... test!

$$\frac{d^2y}{dt^2} + \omega_0^2 y = 0$$

• Use Verlet algoritim

$$y_{n+1} = 2y_n - y_{n-1} - \omega_0^2 dt^2 y_n$$

c force/mass from spring force = -om0**2*ynow c integrate to get y at next time step, use Verlet ynext = 2.0d0*ynow-ylast+dt**2*force

Initial conditions, analytic solution

- Analytic result computed for comparison
- Verlet algorithm needs position at two previous times
- Translate into initial position and initial velocity

y(t)= Acos $\omega_0 t$ + Bsin $\omega_0 t$ Initial conditions, A=y₀, B=v₀/ ω_0

```
c velocity at current timestep
vnow = (ynext-ylast)/(2.0d0*dt)
c If i=1 (first integration step), determine the initial conditions for an
c Next five lines not used in the case of damped, driven oscillator
if(i.eq.1) then
A=ynow
B=vnow/om0
endif
```

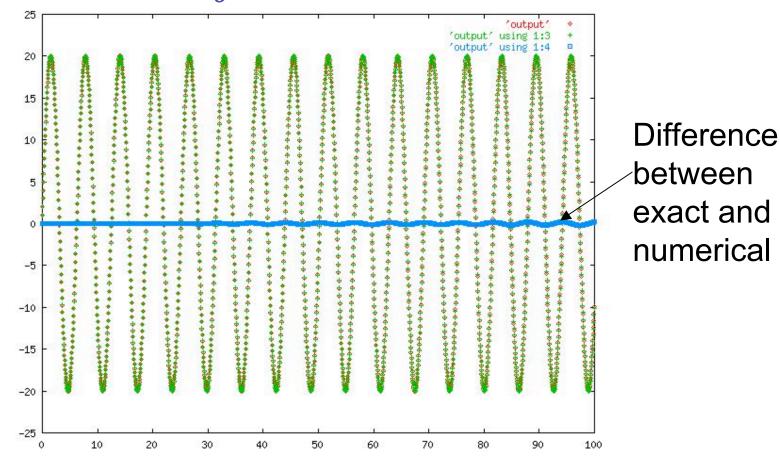
Energy calculation, analytical, and output

```
c velocity at current timestep
vnow = (ynext-ylast)/(2.0d0*dt)
```

```
potential = 0.5d0*sk * ynow**2
kinetic = 0.5d0*vnow**2
etot = potential + kinetic
write (6,100) t,ynow,yanalytic,diff,potential,kinetic,
etot
```

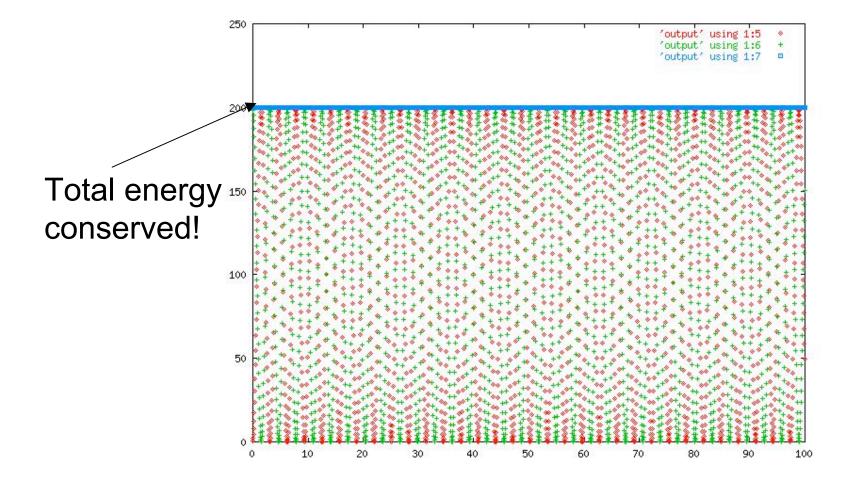
```
100 format(f8.4,6(2x,f12.6))
```

For $\omega_0 = 1$, dt = 0.05



gnuplot> set term jpeg Terminal type set to 'jpeg' Options are 'small size 640,480 ' gnuplot> set output 'displace.jpg' gnuplot> plot 'output','output' using 1:3,'output' using 1:4

Energy conservation, potential, kinetic, total



gnuplot> set output 'energy.jpg' gnuplot> plot 'output' using 1:5,'output' using 1:6,'output' using 1:7

Damped, driven harmonic oscillator

$$rac{d^2y}{dt^2}+2qrac{dy}{dt}+\omega_0^2y=F_Dcos\Omega_Dt$$

- Have to work out numerical integration using Verlet!
- Case with q=0, F_D =0 serves as starting point
- Damping, driving force mean energy not conserved
- Can still compare to analytical y(t) after transient decays

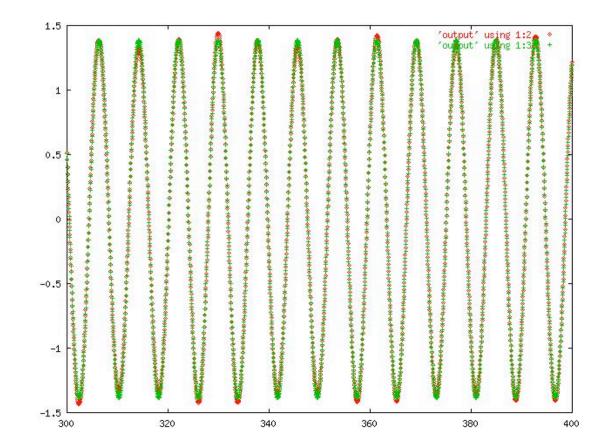
In the underdamped regime, $q < \omega_0$

 $y(t) = c e^{-qt} sin(\beta t + \phi)$

For q=0.01, ω_0 =1, transient decays away τ =1/q = 100 After decay of transient, analytical behavior is

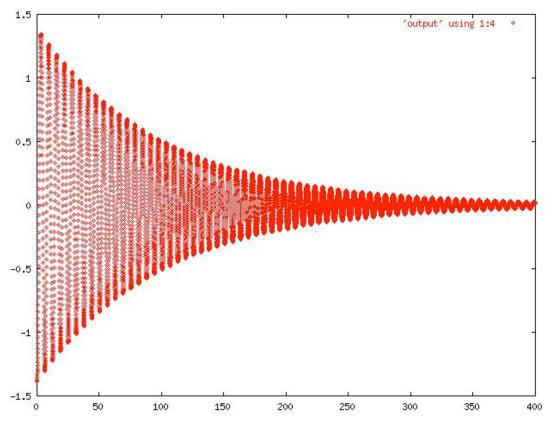
 $y(t) = A \sin(\Omega_D t - \gamma)$

Damped, driven oscillator, position vs. time



Terminal type set to 'jpeg' Options are 'small size 640,480 ' gnuplot> set output 'damped1.jpg' gnuplot> plot [300:400] 'output' using 1:2,'output' using 1:3

Differences between analytic, numerical are due to transients, important for t<100



Differences are equal to the transient behavior, which is not included in analytical result in code

gnuplot> set output 'damped2.jpg'
gnuplot> plot 'output' using 1:4

Code for the analytical result, comparison

c Next three lines are for the damped, driven harmonic oscillator

- c A = F/dsqrt((om0**2-om**2)**2+(2.0d0*q*om0)**2)! used for (
- c phi = datan(2.0d0*om*q/(om0**2-om**2)) ! used for damped d
- c yanalytic = A*dcos(om*t-phi) ! used for damped driven oscillat diff = ynow - yanalytic

Notice the transient behavior, which depends on the initial conditions, is not included here which explains the differences seen in the preceding slide

Uncomment these lines for project!

Nonlinear pendulum/oscillator

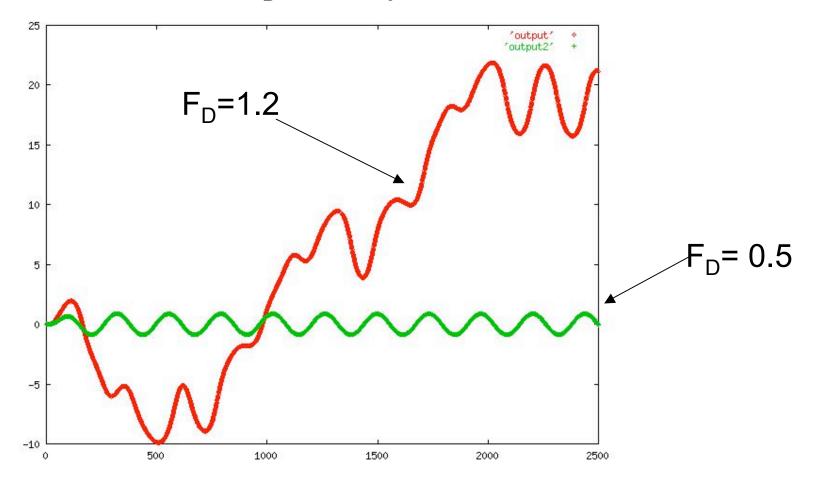
$$rac{d^2y}{dt^2} + 2qrac{dy}{dt} + \omega_0^2 \sin y = F_D cos \Omega_D t$$

- Large forces lead to chaotic behavior
- Predictable... but aperiodic...
- Slight differences in starting conditions lead to different response
- Analytical solution at least in closed form not possible!
- Superposition doesn't work as in linear case!

Nevertheless, small driving forces lead to linear, periodic response!

Simulation for two different driving forces...

 $\Omega_{\rm D}$ =(2/3) ω_0 , q=1/2



- Initial position, velocity was zero
- Chaotic for larger driving force