
Homework 5

PHZ 3151

Due Friday, March 27

1. Consider the Schrodinger equation we investigated in homework 4,
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with boundary conditions ψ(x = 0, t) = ψ(x = L, t) = 0. As you recall, in home-
work 4 we computed the time-dependence by integrating using the Crank-Nicholson
scheme. In this problem, we will take a slightly different approach.

First, consider that the wave function ψ(x, t) given by
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which means that we can find ψ(x, t) at any time t once we know the cn at, for
example, t = 0.

Take the initial wave function to be, as before, a Gaussian wave packet.

ψ(x, t = 0) =
1

σ
1/2
0 π1/4

eik0xe−(x−x0)2/2σ2
0

Determine the expansion coefficients cn numerically. Recall that the cn are given
by
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This integral must be replaced by a summation to be done numerically. This is
discussed in lecture and appendix C. Notice that the cn are complex because the
initial state ψ(x, t = 0) is complex.

Write the code to determine ψ(x, t) in this way. Pick two times, for example t = 50
and t = 100, to compare with the code written in homework 4. Choose the same
parameters as before (L = 200,~ = m = 1, etc.) to make an exact comparison.

2. In this problem, we will consider the concept of writing a differential operator in
the form of a matrix. Consider the eigenvalue equation,[
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]
ψ(x) = Eψ(x)
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Defined over the interval 0 < x < L. The V (x) is given by,
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To solve this problem, we will use a set of basis functions φn(x) =
√
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.

Then, we expand the eigenstates ψ(x) as,

ψ(x) =
∞∑
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Use the fact that, ∫ L

0

φm(x)φn(x)dx = δm,n

and show that the eigenvalue equation can be written as

Hc = Ec

where c is a column vector of the coefficients cn and H is a square matrix with
elements of H given by

Hmn = εnδmn + Vmn

for n,m = 1, 2, 3, 4, .... The elements Vmn, which can be found analytically and
stored, are given by the expression

Vmn =

∫ L

0

φ∗m(x)V (x)φn(x)dx.

If we take L = 10, it also turns out that V (x) is practically zero at x = 0 and x = L,
so when you perform an analytic computation of the integral, you may replace the
limits by ±∞.

Solve the eigenvalue problem above for the coefficients cn corresponding to the lowest
five eigenvalues. Plot the wave function ψ(x) for each of these lowest five eigenvalues,
and compare to the case where V (x) = 0 for 0 < x < L. You have to determine
how many basis states φn(x) to include in your description. Try N = 20 so that H
is a 20 × 20 matrix. Then, try N = 40, and see if the eigenvalues are perceptibly
different.

Turn in the computed eigenvalues E and plotted wave functions ψ(x) for the lowest
five states.
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