
Homework 4

PHZ 3151

Due Friday, March 6, 2009

1. Consider a function y(t) that is periodic in time t with periodicity 2T . Hence,
y(t+ 2MT ) = y(t) where M is any integer.

a) Which of the following three series is an appropriate Fourier representation of
y(t)? (choose one)

y(t) =
a0

2
+
∞∑
n=1

an cos (2nπt/T ) +
∞∑
n=1

bn sin (2nπt/T )

y(t) =
a0

2
+
∞∑
n=1

an cos (nπt/T ) +
∞∑
n=1

bn sin (nπt/T )

y(t) =
∞∑
n=1

an sin (nπt/T )

b) Using the appropriate series chosen in part a), determine the appropriate expan-
sion coefficients an and (possibly) bn for y(t) defined by,

y(t) = T − t

on the interval from −T < t < T . Sketch the periodic function y(t) for a few
periods.

2. Assume we have sampled some signal y(t) at discrete times tm = m∆t. The
sampling interval is regular, so we can assume m is an integer. In total, we collect
M data points, so that the total time we sample is T = M∆t.

Write an expression for the discrete Fourier transform (following appendix C). What
is the maximum frequency we can determine? Explain what what would happen if the
actual signal y(t) contains frequency components greater than this function?

3. Consider the diffusion equation for the scalar field u(x, t), written in the form

1

α2

∂u

∂t
=
∂2u

∂x2
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Use separation of variables to write this partial differential equation as two first-order
differential equations,

dT

dt
= −α2k2T

d2X

dx2
= −k2X

Obtain the solutions in the case of the boundary conditions X(0) = X(L) = 0. Show
then that the solution to the diffusion equation can be written in the form,

u(x, t) =
∞∑
n=1

an sin
(nπx
L

)
e−α

2k2t

4. In this computer project, you will simulate a particle of mass m in a box with
V (x) = 0 for 0 < x < L, and V (x) = ∞ everywhere else. The wave function
ψ(x, t) is governed in this case, for 0 < x < L by the time-dependent Schrodinger
equation,

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2

∂x2
ψ(x, t)

with boundary conditions ψ(x = 0, t) = ψ(x = L, t) = 0. In this case, the analytical
solutions can be written in the form obtained in class,

ψ(x, t) =
∞∑
n=1

ansin
(nπx
L

)
e−iωnt

where ωn = hπn2

4mL2 (~ = h
2π

). Notice the similarity to the analytical solutions we wrote
down for waves on a string with fixed endpoints. As we have seen, the coefficients
an, in this case complex, are determined by the initial conditions.

We will write a code to integrate the time-dependent Schrodinger equation. We will
implement the Crank-Nicholson method as described in class. The initial conditions
will be given by the Gaussian wave packet,

ψ(x, t = 0) =
1

σ
1/2
0 π1/4

eik0xe−(x−x0)2/2σ2
0

Take the total length to be L = 200 and choose an appropriate spatial step ∆x and
hence jmax. Use units with ~ = m = 1. Pick an appropriate (i.e. stable) time
step ∆t. Note that j = −1, 0, 1, 2, ..., jmax and n = 0, 1, ..., tmax/τ . The boundary
conditions are such that ψnj=−1 = 0 and ψnj=jmax

= 0. Thus, show that the problem

2



reduces to solving jmax linear equations. The resulting matrix equation is actually
tridiagonal. Solving this problem is not too computationally difficult, and we will
work on a subroutine tridiag.f to solve it. Note that because the matrix equation has
so many zero values, that we should avoid storing all of the elements in the matrix to
save memory. After considering how to implement the scheme, code it in and view
the evolution. Use a Gaussian wave packet as the initial t = 0 state, using x0 = L/6,
σ0 = 3, and energy E0 = 4 (with E0 = k2

0/2 in units of ~ = m = 1. Occasionally
output the wave function. Plot the time evolution at a few points and compare
directly to the exact analytical result. Consider the appropriate spatial step ∆x and
time step ∆t. Also, what is an acceptable total simulation time τ so that you can
see some waves bounce off of the boundaries. Verify in your code that probability
density is conserved. Finally, in your write up, include pictures of a few snapshots
compared to the analytical results. Include enough to really show the time evolution.
It might be useful to plot the real and imaginary parts of the wave function. Also,
it might be useful to plot |ψ(x, t)|2.
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