
Homework 2

PHZ 3151

Due Friday, February 6 , 2009

1. Consider the differential equation that describes a damped harmonic oscillator
with a driving force,

d2y

dt2
+ 2q

dy

dt
+ ω2

0y = FDcosΩDt

Notice that the natural frequency ω0 is distinct from the driving frequency ΩD.

a) Next find the particular solution to the oscillator equation above. Do not worry
about the transient solution, which corresponds to the homogeneous case. Write your
final answer as y(t) = A cos(ΩDt− γ), and determine expressions for the amplitude
A and phase angle γ.

b) Find an expression for the driving frequency ΩD that results in maximum ampli-
tude A.

c) Find the expression for the instantaneous and average power delivered by the
driving force.

2. Consider a simple LCR circuit driven by an AC source V (t) = VDcos(ΩDt). This
problem should be completely review from your PHY2049 course.

a) Write the differential equation obeyed by the circuit. The equation should be in
terms of the charge Q(t) on the capacitor.

b) By analogy with the driven simple harmonic oscillator in problem 1, show that
the particular solution is Q(t) = Q cos(ΩDt − γ). Determine expressions for the
amplitude Q and the phase angle γ.

c) Determine an expression for the instantaneous and average power delivered by
the AC source. Again, if you have solved problem 1, this one can be done by
analogy.

d) Determine the condition for maximum average power. Notice that this resonant
frequency is not the same as the frequency that results in the maximum amplitude
Q.
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3. Write a code using the Verlet algorithm, as discussed in class, for the damped,
driven simple harmonic oscillator. You code should be able to integrate the differen-
tial equation as in problem 1,

d2y

dt2
+ 2q

dy

dt
+ ω2

0y = FDcosΩDt

In your code, compute the kinetic and potential energies. To determine if the code
is behaving properly, you can monitor the total energy, which is the kinetic plus
potential, as a function of time for the case where the damping and driving forces
are set to zero (e.g. γ = 0 and F0 = 0). Submit a plot of the kinetic, potential, and
total energies as a function of time for a few periods of oscillation. The kinetic and
potential energies will oscillate out of phase, and the total energy should look like a
time-independent constant (i.e. a horizontal line on your plot). If the total energy
is not conserved, there is either an error in the code, or you need to set the value of
∆t smaller. A rule of thumb is ∆t ∼ π

50ω0
for good energy conservation.

Now treat the case with damping and a driving force. We will consider ω to be
comparable to ω0, so that the ∆t you used while testing the code should work here
as well. Output the integrated result for y(t). In addition, output at each step the
analytic result y(t) = A cos(ωt − γ) determined in problem 1. You should notice
that the numerical and analytical results differ at the beginning of the simulation
due to the transient behavior when we abruptly turn on the driving force at t =
0. However, after awhile, the analytical and numerical solutions should converge,
including the phase γ. If they don’t, and assuming the ∆t is still adequate, then either
the numerical integration or the analytical solution are implemented incorrectly in
the code. The analytical should be very easy to check, since you can compute by
hand the amplitude!

Submit a plot of the numerical and analytical results for y(t), both on the same
plot for comparison. Take the case where q = 0.01, FD = 0.5, ΩD = 0.8ω0, and
ω0 = 1.

4. In this problem, you can slightly modify the code developed in problem 3 to study
the nonlinear oscillator given by the equation,

d2y

dt2
+ 2q

dy

dt
+ ω2

0 sin y = FDcosΩDt

Follow along in the book in chapter 3 to understand the physics of the nonlinear
driven pendulum. For large driving forces, chaotic behavior occurs. In particular,
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the behavior does not repeat itself periodically as it did in linear pendulum considered
in problem 3. For this problem, submit plots like Fig. 3.6 in the book. In particular,
plot θ versus time for FD = 0, FD = 0.5, and FD = 1.2. Take q = 1

4
and ω0 = 1, and

ΩD = 2
3
ω0. Try for the timestep δt = 0.4.

For extra credit, make a plot of ω, the angular frequency, against θ for the case
FD = 1.2. Explain what you would expect for the non-chaotic solution in problem
3, where θ(t) = θ0 cos(ΩDt− γ).
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