Parseval's theorem

- For a periodic function $f(x)$ defined on $-I<x<I$, we have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

- The average of $[f(x)]^{2}$ is $\frac{1}{2 l} \int_{-l}^{l}[f(x)]^{2} d x$
- To obtain Parseval's theorm, use the integrals we obtained before

$$
\begin{gathered}
\frac{1}{2 l} \int_{-l}^{l} \sin \frac{m \pi x}{l} \sin \frac{n \pi x}{l} d x=\frac{1}{2} \delta_{m, n} \\
\frac{1}{2 l} \int_{-l}^{l} \cos \frac{m \pi x}{l} \cos \frac{n \pi x}{l} d x=\frac{1}{2} \delta_{m, n} \\
\frac{1}{2 l} \int_{-l}^{l} \sin \frac{m \pi x}{l} \cos \frac{n \pi x}{l} d x=0
\end{gathered}
$$

Parseval's theorem continued

- Using the previous integrals, we find

$$
\frac{1}{2 l} \int_{-l}^{l}[f(x)]^{2} d x=\left(\frac{1}{2} a_{0}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

- Example: Problem 5.8 and Problem 11.7
- Find the Fourier series for $f(x)=1+x$ defined on $-\pi<x<\pi$

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}(1+x) d x=2 \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}(1+x) \cos n x d x=0 \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}(1+x) \sin n x d x=\frac{2(-1)^{n+1}}{n}
\end{gathered}
$$

Example of Parseval's theorem continued

- Then Parseval's theorem states,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}(1+x)^{2} d x=1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{4}{n^{2}}=1+2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

- Problem 11.8 asks us to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, and from Parseval's theorem we see that,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=-\frac{1}{2}+\frac{1}{4 \pi} \int_{-\pi}^{\pi}(1+x)^{2} d x=\frac{\pi^{2}}{6}
$$

- Might even use to compute π !

$$
\pi=\sqrt{6}\left[\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right]^{1 / 2}
$$

For the fun of it... π

- Exact value of $\pi=3.141592653589793$ (Correct to 16 digits... my computer using intrinsic functions got the digits after these incorrect)
- From serious on previous page, I got the following results: 10^{4} terms: 3.141497163947214
10^{5} terms: 3.141583104326456
10^{6} terms: 3.141591698660508
10^{7} terms: 3.141592558095902
- Correct to 7 digits for 10^{7} terms, and took <1 second to compute

Parseval's theorem for complex Fourier series

- When we average $|f(x)|^{2}=f^{*}(x) f(x)$ over one period, we obtain $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}$
- Proof in problem 3, for $f(x)$ periodic with periodicity 2π

$$
(-\pi<x<\pi)
$$

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

- We use the orthogonality of the functions $e^{i n x}$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n-m) x} d x=\delta_{m, n}
$$

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{*}(x) f(x) d x=\frac{1}{2 \pi} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m}^{*} c_{n} \int_{-\pi}^{\pi} e^{i(m-n) x} d x=\sum_{n=-\infty}^{\infty} c_{n}^{*} c_{n}
$$

Another example: problem 2

- We can also average $[f(x)]^{2}$ using the complex series (contrast to averaging $\left.|f(x)|^{2}=f^{*}(x) f(x)\right)$

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}[f(x)]^{2} d x=\frac{1}{2 \pi} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m} c_{n} \int_{-\pi}^{\pi} e^{i(m+n) x} d x=\sum_{n=-\infty}^{\infty} c_{n} c_{-n}
$$

- Consider the special case where $f(x)$ is real, then the expansion in complex Fourier series is

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{i n x}+c_{-n} e^{-i n x}\right)
$$

- Since $f(x)$ is real, the complex parts must cancel, so using the Euler formula

Problem 2 continued

$$
f(x)=c_{0}+\sum_{n=1}^{\infty}\left(c_{n}+c_{-n}\right) \cos n x+\sum_{n=1}^{\infty}\left(i c_{n}-i c_{-n}\right) \sin n x
$$

- For the imaginary parts to go away, we require $c_{-n}=c_{n}^{*}$

$$
\begin{gathered}
c_{n}+c_{-n}=c_{n}+c_{n}^{*}=2 \operatorname{Re}\left[c_{n}\right] \\
i c_{n}-i c_{-n}=i c_{n}-i c_{n}^{*}=-2 \operatorname{Im}\left[c_{n}\right]
\end{gathered}
$$

- Then for real $f(x)$, we obtain

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}[f(x)]^{2} d x=\frac{1}{2 \pi} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m} c_{n} \int_{-\pi}^{\pi} e^{i(m+n) x} d x=\sum_{n=-\infty}^{\infty} c_{n}^{*} c_{n}
$$

