
Laplace equation in polar coordinates

• The Laplace equation is given by

∂2F

∂x2
+
∂2F

∂y2
= 0

• We have x = r cos θ, y = r sin θ, and also r2 = x2 + y2,
tan θ = y/x
• We have for the partials with respect to x and y ,

∂F

∂x
=
∂F

∂r

∂r

∂x
+
∂F

∂θ

∂θ

∂x

• Then 2rdr = 2xdx + 2ydy , and
d tan θ = (1 + sin2 θ/ cos2 θ)dθ = − y

x2 dx + 1
x dy

• The first relation shows ∂r
∂x = x/r = cos θ

• The second relation shows ∂θ
∂x = − sin θ

r
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Laplace equation in polar coordinates, continued

• So finally we get for ∂F
∂x , and also ∂F

∂y

∂F

∂x
= cos θ

∂F

∂r
− sin θ

r

∂F

∂θ

∂F

∂y
= sin θ

∂F

∂r
+

cos θ

r

∂F

∂θ

• We can repeat this process, taking ∂
∂x and ∂

∂y of the above
results
• Finally we obtain Laplace equation in polar coordinates,

1

r

∂

∂r

(
r
∂F

∂r

)
+

1

r2

∂2F

∂2θ
= 0
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Another example of change of variables, Hamiltonian and
Lagrangian

• Legendre transformations are also a way to change the
independent variables
• In classical mechanics, we can work with L(q, q̇) or H(q, p)
• Since L(q, q̇) depends on independent variables q and q̇, we can
find dL
• It turns out that dL = ∂L

∂qdq + ∂L
∂q̇dq̇ is give by,

dL = ṗdq + pdq̇

• Define H = q̇p − L (A Legendre transformation!)

dH = pdq̇ + q̇dp − dL = −ṗdq + q̇dp

• Therefore H(q, p) (function of independent variables q and p
• Constructing H(q, p) is the usual starting point for quantum
mechanics
• Chapter 4, section 11, problem 11
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Chapter 5: Multiple integrals and applications

We often require multiple integrals in physics for obvious reasons.
These will include integrals over geometric shapes including line
integrals, surface integrals, and volume integrals. Sometimes
symmetry and a clever change of variables can simplify multiple
integrals to few dimensions. In any case, we need to explore how
to use the Jacobian to write integrals in various coordinate
systems. Examples include Cartesian, polar, spherical, and
cylindrical coordinate systems.
Note that the first midterm tests up to the material in chapter 5!
(Lecture may go somewhat beyond chapter 5 before the test)
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Introduction

By the end of chapter 5, you should be able to...

I Understand and use double and triple integrals

I Make some applications of multiple integrals to physics
problems

I Change variables using the Jacobian

I Work in typical coordinate systems including Cartesian, polar,
cylindrical and spherical

I Use surface and volume integrals (line integrals will come in a
later chapter)
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Double and triple integrals

• We might want to evaluate a volume integral, for example
z = f (x , y) surface to surface bounded by coordinate axes
• We have dV = zdxdy , which is just summing up the volume of
columns of height z
• We have to consider the limits on x and y , where limits might be
a function of other variable
• For example, find the volume of a solid bounded by z = 1 + y ,
the vertical plane 2x + y = 2, and the coordinate axes

V =

∫ 1

x=0

∫ y=2−2x

y=0
(1 + y)dydx

• Perform integral on y first, since limits depend on x

V =

∫ 1

x=0

[
(2− 2x) + (2− 2x)2/2

]
dx =

∫ 1

x=0

[
4− 6x + 2x2

]
dx = 5/3

• We could have used x = 1− y/2, and integrate x first, then y
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Another way...

• We observe that our volume is also V =
∫ ∫ ∫

dxdydz and then
we just need suitable limits
• Could use z = 0 on lower surface, z = 1 + y on upper surface
and integrate on z first
• Next use y = 0 and y = 2− 2x on two faces and integrate on y
• Lastly x = 0 and x = 1 are limits on x

V =

∫ x=1

x=0

∫ y=2−2x

y=0

∫ z=1+y

z=0
dzdydx

• After the z integral, we get same thing as before when we were
summing up columns,

V =

∫ 1

x=0

∫ y=2−2x

y=0
(1 + y)dydx = 5/3
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Volume integrals: coordinate systems

• We might want to integrate over a surface or a volume∫ ∫ ∫
F (x , y , z)dxdydz

• We might most easily do in another coordinate system, for
example spherical coordinates∫ ∫ ∫

F (r , φ, θ)r2drdφd(cos θ)

• Of course d cos θ = − sin θdθ
• In general we have dV or dΩ,

dV = r2drdφd cos(θ)

• Or in cylindrical coordinates

dV = rdrdθdz
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Change of variables in the integral; Jacobian

• Element of area in Cartesian system, dA = dxdy
• We can see in polar coordinates, with x = r cos θ, y = r sin θ,
r2 = x2 + y2, and tan θ = y/x , that dA = rdrdθ
• In three dimensions, we have a volume dV = dxdydz in a
Carestian system
• In a cylindrical system, we get dV = rdrdθdz
• In a spherical system, we get dV = r2drdφd(cos θ)
• We can find with simple geometry, but how can we make it
systematic?
• We can define the Jacobian to make this more straightforward
and automatic
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The Jacobian

• In a Cartesian system we find a volume element simply from
dV = dxdydz
• Now assume x → x(u, v ,w), y → y(u, v ,w), and z → z(u, v ,w)
• We have in the Cartesian system d~r = î dx + ĵdy + k̂dz
• We can then find the total differentials dx , dy , and dz from

dx =
∂x

∂u
du +

∂x

∂v
dv +

∂x

∂w
dw

dy =
∂y

∂u
du +

∂y

∂v
dv +

∂y

∂w
dw

dz =
∂z

∂u
du +

∂z

∂v
dv +

∂z

∂w
dw
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Jacobian continued

• We can define ~A to be along a direction such that dv = dw = 0,
then in the Cartesian system

~A =

(
î
∂x

∂u
+ ĵ

∂y

∂u
+ k̂

∂z

∂u

)
du

• Likewise ~B will be along a direction with du = dw = 0, then in
the Cartesian system we see,

~B =

(
î
∂x

∂v
+ ĵ

∂y

∂v
+ k̂

∂z

∂v

)
dv

• Finally ~C will be along a direction where du = dv = 0, then in
the Cartesian system we see,

~C =

(
î
∂x

∂w
+ ĵ

∂y

∂w
+ k̂

∂z

∂w

)
dw
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Jacobian continued

• The volume element made by these vectors is dV = ~A · (~B × ~C ),
which is simply the determinant∣∣∣∣∣∣

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣∣∣∣∣∣ dudvdw = Jdudvdw

• Here the determinant is the Jacobian J
• We have to be careful! The J found above might be negative, so
in general we take |J|
• Notice also that we can interchange rows and columns (i.e. take
the transpose) and the determinant is unchanged, so

J =
∂(x , y , z)

∂(u, v ,w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
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Example: Volume element in cylindrical coordinates

• We know that dV = dxdydz in Cartesian coordinates, and also
dV = rdrd cos θdz in cylindrical coordinates, but let’s prove it!
• We see that x = r cos θ, y = r sin θ, and z = z
• We then can find J,

J =
∂(x , y , z)

∂(r , θ, z)
=

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

∣∣∣∣∣∣ =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r

• So finally the element of volume dV = Jdrdθdz = rdrdθdz in
cylindrical coordinates
• The book proves that dV = r2drdφd(cos θ) in Section 4, go
through the proof to practice Jacobians!
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Element of area

• We might have an integral over area dA = dxdy , and want
instead the integral in some other coordinate system
• Again assume we have x → x(u, v) and y → y(u, v)
• Define vectors ~B and ~C which will lie in the x ,y plane
• For ~B we assume v does not change

~B =

(
î
∂x

∂u
+ ĵ

∂y

∂u

)
du

• For ~C we assume u does not change

~C =

(
î
∂x

∂v
+ ĵ

∂y

∂v

)
dv

• An element of area is found from dA = |~B × ~C |
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Element of area continued

• We find for ~B × ~C

~B×~C =

∣∣∣∣∣∣
î ĵ k̂
∂x
∂u

∂y
∂u 0

∂x
∂v

∂y
∂v 0

∣∣∣∣∣∣ dudv = k̂

∣∣∣∣ ∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣ dudv = k̂

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ dudv

• We define the Jacobian J as

J =
∂(x , y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣
• Again accounting for the fact that J may be negative, we find for
dA

dA = |J|dudv
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Example: Surface integral in polar coordinates

• We know that dA = dxdy , and in polar coordinates dA = rdrdθ,
but let’s use the Jacobian to define
• We have x = r cos θ and y = r sin θ, so we have for J

J =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

• So we find as we expected for dA

dA = |J|drdθ = rdrdθ
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Elements of length

• We might need elements of arc lengths in line integrals
• In Cartesian coordinates, it is quite straightforward

ds2 = dx2 + dy2 + dz2

• To find in another system, we need dx in terms of the other
system, so x → x(u, v ,w), etc.

dx =
∂x

∂u
du +

∂x

∂v
dv +

∂x

∂w
dw
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Example in cylindrical coordinates

• For example, in cylindrical coordinates, we have x = r cos θ,
y = r sin θ, and z = z , so

dx = cos θdr − r sin θdθ

dy = sin θdr + r cos θdθ

dz = dz

• So we find the element of arc length in cylindrical coordinates,

ds2 = dr2 + r2dθ2 + dz2
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Example in spherical coordinates

• In spherical coordinates we have x = r cosφ sin θ,
y = r sinφ sin θ, and z = r cos θ
• An element of arc length becomes,

ds2 = dr2 + r2dθ + r2 sin2 θdφ2
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Surface integrals on a cylinder or a sphere

• We can see that an element ~dA with a magnitude equal to the
area and direction normal to the surface can be found in a
cylindrical system by noticing that the ẑdz and θ̂adθ vectors are
perpendicular, so

~dA = θ̂adθ × ẑdz = adθdzr̂

• Obviously the magnitude is dA = adθdz
• Likewise in spherical coordinates we find ~dA from

~dA = aφ̂ sin θdφ× aθ̂dθ = a2 sin θdφdθr̂

• In spherical coordinates the magnitude is dA = a2 sin θdφdθ
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Example: Center of mass

• We can find the center of mass coordinates x̄ , ȳ , and z̄ defined
by, in the case of a continuous mass distribution

x̄ =

∫
xdM∫
dM

ȳ =

∫
ydM∫
dM

z̄ =

∫
zdM∫
dM

• The significance is that when no external forces are acting on the
body, the center of mass moves with a uniform velocity (or is at
rest)
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More significance of the center of mass

• If there is a total (net) force ~Fnet , then we have

M
d2x̄

dt2
= Fnet,x

M
d2ȳ

dt2
= Fnet,y

M
d2z̄

dt2
= Fnet,z
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Example with constant density

• With a constant density, the center of mass corresponds to the
centroid of the body
• Section 3, problem 7, Find the center of mass x̄ and ȳ for a
rectangular lamina with constant areal density ρ = 1 and vertices
at (0, 0), (0, 2), (3, 0), and (3, 2)
• The factor dM = ρdxdy = dxdy (since ρ = 1)
• The limits on x integration are 0 and 3, and the limits on y
integration are 0 and 2, so

x̄ =

∫ 2
0

∫ 3
0 xdxdy∫ 2

0

∫ 3
0 dxdy

=
9

6
=

3

2

ȳ =

∫ 2
0

∫ 3
0 ydxdy∫ 2

0

∫ 3
0 dxdy

=
6

6
= 1

• Not surprising, the center of mass is the centroid and is right in
the middle of rectangle
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Example continued

• What if ρ = xy? (This is the case in problem 7)

x̄ =

∫ 2
0

∫ 3
0 x2ydxdy∫ 2

0

∫ 3
0 xydxdy

= 2

ȳ =

∫ 2
0

∫ 3
0 xy2dxdy∫ 2

0

∫ 3
0 xydxdy

=
4

3
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Moment of inertia of a solid cylinder

• Consider a cylinder of height h, radius R, and mass M. Mass
density is uniform.
• The volume of the cylinder is V = πR2h, so
ρ = M/V = M/(πR2h)
• Use cylindrical coordinates and determine the moment of inertia
about the z axis Iz

Iz = ρ

∫ h

0

∫ 2π

0

∫ R

0
r3drdθdz =

M

πR2h

2πR4h

4
= MR2
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Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of
physics. For example, Newton’s 2nd law is ~F = m d2~r

dt2 . In electricity
and magnetism, we need surface and volume integrals of various
fields. Fields can be scalar in some cases, but often they are vector
fields like ~E (x , y , z) and ~B(x , y , z)
By the end of the chapter you should be able to

I Work with various vector products including triple products

I Differentiate vectors

I Use directional derivatives and the gradient

I Divergence and curl

I Line integrals

I Divergence theorem, Green theorem in plane, and Stokes
theorem
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Triple products

• We have already seen that the volume of a parallelpiped from ~A,
~B, and ~C can be found

~A · (~B × ~C ) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy 0

∣∣∣∣∣∣
• It is also useful to be able to find the vector product ~A× (~B × ~C )

~A× (~B × ~C ) = (~A · ~C )~B − (~A · ~B)~C
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Change of variables in the integral; Jacobian

• Element of area in Cartesian system, dA = dxdy
• We can see in polar coordinates, with x = r cos θ, y = r sin θ,
r2 = x2 + y2, and tan θ = y/x , that dA = rdrdθ
• In three dimensions, we have a volume dV = dxdydz in a
Carestian system
• In a cylindrical system, we get dV = rdrdθdz
• In a spherical system, we get dV = r2drdφd(cos θ)
• We can find with simple geometry, but how can we make it
systematic?
• We can define the Jacobian to make this more straightforward
and automatic
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The Jacobian

• In a Cartesian system we find a volume element simply from
dV = dxdydz
• Now assume x → x(u, v ,w), y → y(u, v ,w), and z → z(u, v ,w)
• We have in the Cartesian system d~r = î dx + ĵdy + k̂dz
• We can then find the total differentials dx , dy , and dz from

dx =
∂x

∂u
du +

∂x

∂v
dv +

∂x

∂w
dw

dy =
∂y

∂u
du +

∂y

∂v
dv +

∂y

∂w
dw

dz =
∂z

∂u
du +

∂z

∂v
dv +

∂z

∂w
dw

Patrick K. Schelling Introduction to Theoretical Methods



Jacobian continued

• We can define ~A to be along a direction such that dv = dw = 0,
then in the Cartesian system

~A =

(
î
∂x

∂u
+ ĵ

∂y

∂u
+ k̂

∂z

∂u

)
du

• Likewise ~B will be along a direction with du = dw = 0, then in
the Cartesian system we see,

~B =

(
î
∂x

∂v
+ ĵ

∂y

∂v
+ k̂

∂z

∂v

)
dv

• Finally ~C will be along a direction where du = dv = 0, then in
the Cartesian system we see,

~C =

(
î
∂x

∂w
+ ĵ

∂y

∂w
+ k̂

∂z

∂w

)
dw
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Jacobian continued

• The volume element made by these vectors is dV = ~A · (~B × ~C ),
which is simply the determinant∣∣∣∣∣∣

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣∣∣∣∣∣ dudvdw = Jdudvdw

• Here the determinant is the Jacobian J
• We have to be careful! The J found above might be negative, so
in general we take |J|
• Notice also that we can interchange rows and columns (i.e. take
the transpose) and the determinant is unchanged, so

J =
∂(x , y , z)

∂(u, v ,w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
Patrick K. Schelling Introduction to Theoretical Methods



Example: Volume element in cylindrical coordinates

• We know that dV = dxdydz in Cartesian coordinates, and also
dV = rdrd cos θdz in cylindrical coordinates, but let’s prove it!
• We see that x = r cos θ, y = r sin θ, and z = z
• We then can find J,

J =
∂(x , y , z)

∂(r , θ, z)
=

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

∣∣∣∣∣∣ =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r

• So finally the element of volume dV = Jdrdθdz = rdrdθdz in
cylindrical coordinates
• The book proves that dV = r2drdφd(cos θ) in Section 4, go
through the proof to practice Jacobians!
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Element of area

• We might have an integral over area dA = dxdy , and want
instead the integral in some other coordinate system
• Again assume we have x → x(u, v) and y → y(u, v)
• Define vectors ~B and ~C which will lie in the x ,y plane
• For ~B we assume v does not change

~B =

(
î
∂x

∂u
+ ĵ

∂y

∂u

)
du

• For ~C we assume u does not change

~C =

(
î
∂x

∂v
+ ĵ

∂y

∂v

)
dv

• An element of area is found from dA = |~B × ~C |
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Element of area continued

• We find for ~B × ~C

~B×~C =

∣∣∣∣∣∣
î ĵ k̂
∂x
∂u

∂y
∂u 0

∂x
∂v

∂y
∂v 0

∣∣∣∣∣∣ dudv = k̂

∣∣∣∣ ∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣ dudv = k̂

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ dudv

• We define the Jacobian J as

J =
∂(x , y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣
• Again accounting for the fact that J may be negative, we find for
dA

dA = |J|dudv
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Example: Surface integral in polar coordinates

• We know that dA = dxdy , and in polar coordinates dA = rdrdθ,
but let’s use the Jacobian to define
• We have x = r cos θ and y = r sin θ, so we have for J

J =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

• So we find as we expected for dA

dA = |J|drdθ = rdrdθ
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Elements of length

• We might need elements of arc lengths in line integrals
• In Cartesian coordinates, it is quite straightforward

ds2 = dx2 + dy2 + dz2

• To find in another system, we need dx in terms of the other
system, so x → x(u, v ,w), etc.

dx =
∂x

∂u
du +

∂x

∂v
dv +

∂x

∂w
dw
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Example in cylindrical coordinates

• For example, in cylindrical coordinates, we have x = r cos θ,
y = r sin θ, and z = z , so

dx = cos θdr − r sin θdθ

dy = sin θdr + r cos θdθ

dz = dz

• So we find the element of arc length in cylindrical coordinates,

ds2 = dr2 + r2dθ2 + dz2
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Example in spherical coordinates

• In spherical coordinates we have x = r cosφ sin θ,
y = r sinφ sin θ, and z = r cos θ
• An element of arc length becomes,

ds2 = dr2 + r2dθ + r2 sin2 θdφ2
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Surface integrals on a cylinder or a sphere

• We can see that an element ~dA with a magnitude equal to the
area and direction normal to the surface can be found in a
cylindrical system by noticing that the ẑdz and θ̂adθ vectors are
perpendicular, so

~dA = θ̂adθ × ẑdz = adθdzr̂

• Obviously the magnitude is dA = adθdz
• Likewise in spherical coordinates we find ~dA from

~dA = aφ̂ sin θdφ× aθ̂dθ = a2 sin θdφdθr̂

• In spherical coordinates the magnitude is dA = a2 sin θdφdθ
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Example: Center of mass

• We can find the center of mass coordinates x̄ , ȳ , and z̄ defined
by, in the case of a continuous mass distribution

x̄ =

∫
xdM∫
dM

ȳ =

∫
ydM∫
dM

z̄ =

∫
zdM∫
dM

• The significance is that when no external forces are acting on the
body, the center of mass moves with a uniform velocity (or is at
rest)
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More significance of the center of mass

• If there is a total (net) force ~Fnet , then we have

M
d2x̄

dt2
= Fnet,x

M
d2ȳ

dt2
= Fnet,y

M
d2z̄

dt2
= Fnet,z

Patrick K. Schelling Introduction to Theoretical Methods



Example with constant density

• With a constant density, the center of mass corresponds to the
centroid of the body
• Section 3, problem 7, Find the center of mass x̄ and ȳ for a
rectangular lamina with constant areal density ρ = 1 and vertices
at (0, 0), (0, 2), (3, 0), and (3, 2)
• The factor dM = ρdxdy = dxdy (since ρ = 1)
• The limits on x integration are 0 and 3, and the limits on y
integration are 0 and 2, so

x̄ =

∫ 2
0

∫ 3
0 xdxdy∫ 2

0

∫ 3
0 dxdy

=
9

6
=

3

2

ȳ =

∫ 2
0

∫ 3
0 ydxdy∫ 2

0

∫ 3
0 dxdy

=
6

6
= 1

• Not surprising, the center of mass is the centroid and is right in
the middle of rectangle
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Example continued

• What if ρ = xy? (This is the case in problem 7)

x̄ =

∫ 2
0

∫ 3
0 x2ydxdy∫ 2

0

∫ 3
0 xydxdy

= 2

ȳ =

∫ 2
0

∫ 3
0 xy2dxdy∫ 2

0

∫ 3
0 xydxdy

=
4

3
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Moment of inertia of a solid cylinder

• Consider a cylinder of height h, radius R, and mass M. Mass
density is uniform.
• The volume of the cylinder is V = πR2h, so
ρ = M/V = M/(πR2h)
• Use cylindrical coordinates and determine the moment of inertia
about the z axis Iz

Iz = ρ

∫ h

0

∫ 2π

0

∫ R

0
r3drdθdz =

M

πR2h

2πR4h

4
= MR2
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Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of
physics. For example, Newton’s 2nd law is ~F = m d2~r

dt2 . In electricity
and magnetism, we need surface and volume integrals of various
fields. Fields can be scalar in some cases, but often they are vector
fields like ~E (x , y , z) and ~B(x , y , z)
By the end of the chapter you should be able to

I Work with various vector products including triple products

I Differentiate vectors

I Use directional derivatives and the gradient

I Divergence and curl

I Line integrals

I Divergence theorem, Green theorem in plane, and Stokes
theorem
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Triple products

• We have already seen that the volume of a parallelpiped from ~A,
~B, and ~C can be found

~A · (~B × ~C ) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy 0

∣∣∣∣∣∣
• It is also useful to be able to find the vector product ~A× (~B × ~C )

~A× (~B × ~C ) = (~A · ~C )~B − (~A · ~B)~C
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