
Chapter 2: Complex numbers

Complex numbers are commonplace in physics and engineering. In
particular, complex numbers enable us to simplify equations and/or
more easily find solutions to equations. We will explore the
damped, driven simple-harmonic oscillator as an example of the
use of complex numbers.
By the end of this chapter you should be able to...

I Represent complex numbers in various ways

I Use complex algebra
I Complex infinite series
I Determine functions of complex numbers
I Use Euler’s formula
I Use exponential and trigonometric functions
I Define and use hyperbolic functions
I Use logarithms
I Do all of the above with complex numbers!
I Solve harmonic oscillator and driven-damped oscillator
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Examples using Euler’s formula

• Express z = 2e
πi
4 in the form z = x + iy

From Euler’s formula,

2e
iπ
4 = 2 cos

π

4
+ 2i sin

π

4
=
√

2 + i
√

2

• Express z =
(

i
√

2
1+i

)6
in the form z = x + iy

Using Euler’s formula, i = e
iπ
2 and 1 + i =

√
2e

πi
4 , then we see(

i
√

2

1 + i

)6

=

(
e

iπ
2

e
iπ
4

)6

=
(

e
iπ
4

)6
= e

3πi
2

Then we use Euler’s formula,

e
3πi
2 = cos

3π

2
+ i sin

3π

2
= −i
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Powers and roots of complex numbers

We can start with the form z = re iθ, then to take to the nth power,

zn =
(

re iθ
)n

= rne inθ

Likewise, if we want the nth root of z,

z1/n =
(

re iθ
)1/n

= r1/ne iθ/n

We used this in the second example in the last slide
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Examples of roots of complex numbers

• For z = −8, determine z1/3 = (−8)1/3 in the form x + iy
For z = −8, we can see r = 8 and θ = π, so z = 8e iπ, and then

z1/3 = (−8)1/3 =
(
8e iπ

)1/3
= 2e iπ/3

Then we use Euler’s formula,

2e iπ/3 = 2 cosπ/3 + 2i sinπ/3 = 1 + i
√

3

This can be easily checked without invoking Euler’s formula,(
1 + i

√
3
)3

= −8
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Exponential and trigonometric functions

Euler’s formula can be used to find representations of cos θ and
sin θ

sin θ =
e iθ − e−iθ

2i
(1)

cos θ =
e iθ + e−iθ

2
(2)

Instead of just real θ, this also applies for complex z ,

sin z =
e iz − e−iz

2i
(3)

cos z =
e iz + e−iz

2
(4)
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Example of complex exponentials for integration

Complex exponentials are useful for integrating products of sin and
cos functions. For example
• Solve the integral

∫ π
−π cos 2x cos 3xdx .

First we make note that cos2x = e2ix+e−2ix

2 and cos3x = e3ix+e−3ix

2

∫ π

−π
cos 2x cos 3xdx =

1

4

∫ π

−π

(
e5ix + e ix + e−ix + e−5ix

)
dx

This integral is easy, and we get

1

4

[(
e5ix − e−5ix

5i

)
+

(
e ix − e−ix

i

)]π
−π

=

[
1

10
sin 5x +

1

2
sin x

]π
−π

= 0

The complex exponential form is also useful in differential
equations.
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Hyperbolic functions

If we start with our representations of cos and sin as complex
exponentials, then consider pure imaginary argument (e.g. z = iy)

sin iy = i
ey − e−y

2
(5)

cos iy =
ey + e−y

2
(6)

This provides us with definitions for the hyperbolic functions,
sinh y = −i sin iy and cosh y = cos iy . More generally for any z ,

sinh z =
ez − e−z

2
(7)

cosh z =
ez + e−z

2
(8)

Also tanh z = sinh z
cosh z , coth z = cosh z

sinh z ,etc.
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Example with hyperbolic functions

• Write sinh
(
ln 2 + iπ

3

)
in x + iy form

We use the representation of sinh in terms of exponentials,

sinh

(
ln 2 +

iπ

3

)
=

e(ln 2+iπ/3) − e−(ln 2+iπ/3)

2
=

2e iπ/3 − (1/2)e−iπ/3

2

Then using Euler’s formula for the complex exponentials, we get

sinh

(
ln 2 +

iπ

3

)
=

3

8
+

5
√

3

8
i
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Logarithms of complex numbers

I It is possible to take logarithms of negative or even complex
numbers

I If z = ew then w = ln z where z is complex

I w = ln z = ln(re iθ) = ln r + iθ

I Since we can add 2nπ to θ, n integer, and get same result, we
have most generally:

ln (re iθ) = ln r + i(θ ± 2nπ) (9)
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Complex roots and complex powers

We can take a complex number a to a complex power b! We can
often evaluate using,

ab = eb ln a (10)

• For example, evaluate i i in the form x + iy

i i = e i ln i

Then using i = e iπ/2e±2nπi (from Euler’s formula), we see
i ln i = −π/2± 2nπ, and finally,

i i = e−π/2±2nπ

While there are an infinite number of answers, note that they are
all real!
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Example of a complex number and a real root

• Evaluate i1/2 in the form x + iy .

i1/2 = e(1/2) ln i = e(1/2) ln (e iπ/2±2nπi ) = e iπ/4±inπ

Since e inπ = 1 for even n and e inπ = −1 for odd n, we have two
answers,

i1/2 = ±e iπ/4 = ±1 + i√
2

Not surprising that the square root gives two possible results, as it
does for real numbers.
• Check directly this result,

i1/2i1/2 =

[
1 + i√

2

] [
1 + i√

2

]
= i
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Inverse trigonometric and hyperbolic functions

I For w = cos z , we have z = arccos w = cos−1 w

I Likewise w = sin z , we have z = arcsin w = sin−1 w

I If z is real, w is always between −1 and +1

I If z is complex, w does not have to be between −1 and +1

It is convenient to use the forms,

w = cos z =
e iz + e−iz

2

w = sin z =
e iz − e−iz

2i
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Example of cos z , sin z with complex z

• Find z = arccos (i
√

8) in the form x + iy
We start with z = arccos (i

√
8) and write equivalently cos z = i

√
8

cos z =
e iz + e−iz

2
= i
√

8

For simplicity take u = e iz then we can write,

u + u−1

2
= i
√

8

Which gives the quadratic equation,

u2 − 4i
√

2u + 1 = 0

This has the roots u = (2
√

2± 3)i , so iz = ln
[(

2
√

2± 3
)

i
]
...

complete in the homework!
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Chapter 3: Linear algebra

Problems in physics often lead to a set of linear equations. In
solving linear equations is often convenient to use matrices and
vectors. Matrices and vectors also occur frequently in the
representation of states and linear operators in quantum
mechanics. Determining the quantum states of a system can be
reduced to solving an eigenvalue equation. Another example is
coordinate transformations, which occurs in, for example, relativity
and group theory, which is essential in particle physics but also
crystallography amongst other areas. The vibrations of molecules
and crystals can also be understood by solving large sets of linear
equations. It’s hard to overemphasize the importance of this
subject!
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Goals:

By the end of this chapter you should be able to:

I Represent a set of linear equations with matrices

I Use elementary row reduction to solve a matrix equation

I Work with determinants

I Use Cramer’s rule to solve matrix equations

I Work with vectors and vector algebra

I Understand vector spaces, linear dependence/independence

I ”Diagonalize” a matrix

I Get some basic applications of matrix diagonalization (some
physics here!)

I Learn some fundamentals of group theory

I Learn about inner products, Dirac notation (used frequently in
quantum mechanics!)
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Elementary row operations

Consider a set of linear equations, for example:

x − 2y = 13

−4x + y = 17

This is easily solved. From the first equation, x = 2y + 13.
Substitute into the second equation,

−4x + y = −4(2y + 13) + y = −7y − 52 = 17

We see y = −69/7 and x = 2y + 13 = −(2)(69)/7 + 13 = −47/7

Check it!
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Another approach: matrices

x − 2y = 13

−4x + y = 17

Matrix of the coefficients and two 2× 1 matrices (vectors),

M =

(
1 −2
−4 1

)

r =

(
x
y

)
k =

(
13
17

)
2∑

j=1

Mij rj = ki

For Mij the i is the row, and j is the column.
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The augmented matrix

To make row reduction easy, we can make this even simpler:

x − 2y = 13

−4x + y = 17

As an augmented matrix then,(
1 −2 13
−4 1 17

)
We will use row reduction to solve the equations
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The basic rules:

We can:

I Interchange rows

I Multiply or divide a row by a nonzero constant

I Add or subtract one row from another
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Example of row reduction:

(
1 −2 13
−4 1 17

)
1. Multiply first row by 4, add to second row(

1 −2 13
0 −7 69

)
2. Solve y = −69/7
3. From first row we find x = 13− (2)(69)/7 = −47/7

Same as before! The operations we did were equivalent.
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Inconsistency, linear independence

Is there always a solution? No!

Equations may be inconsistent, which suggests a mistake

For two equations and two unknowns, can you imagine two lines in
the x-y plane that represent a set of linear equations with no
solution? The question is whether the equations are linearly
independent. We will return to this later.

Linearly dependent equations can also lead to infinite numbers of
solutions!

Patrick K. Schelling Introduction to Theoretical Methods



Rank of a matrix

The rank of a matrix is the number of nonzero rows.

Consider the rank of M (coefficient matrix), A (augmented
matrix), and n the number of unknowns after row reduction:

I rank M = rank A = n, one unique solution

I rank M < rank A, equations inconsistent

I rank M = rank A = R < n, infinite number of solutions!

In the last case, we can find R unknowns in terms of the n − R
unknowns. Might need another way to constrain solution.
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Determinants

Determinants of a 2× 2 matrix are easily evaluated. Here we
define it:

A =

(
a b
c d

)
detA =

∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

For bigger matrices, it is helpful to define the minor Mij and
cofactor (−1)i+jMij .
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Determinants of bigger matrices:

Write our determinant in the notation:

detA =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
Take the element a11. Its minor M11 is found from the smaller
matrix

M11 =

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ = a22a33 − a23a32

The cofactor of of aij is (−1)i+jMij , so the cofactor of a11 is
(−1)2M11 = M11.
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Determinants of bigger matrices:

For the 3× 3 matrix in the last slide, we take a row or column, and
multiply the elements by their cofactors.

detA =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
For example, we use the first row

detA = a11(−1)2M11 + a12(−1)3M12 + a13(−1)4M13

Could use any row or column and get the same result!
We get here,

detA = a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31)
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Cramer’s Rule: A use for determinants!

a1x + b1y = c1

a2x + b2y = c2

Using row-reduction, we find

x =

∣∣∣∣ c1 b1

c2 b2

∣∣∣∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣

y =

∣∣∣∣ a1 c1

a2 c2

∣∣∣∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣
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Some useful facts about determinants:

I If we multiply a column or row by k , then the determinant is
multiplied by k .

I The determinant is zero if a row or column is zero, or if two
columns or rows are identical or proportional

I Interchanging rows or columns changes the sign of
determinant

I Determinant is unchanged if we add rows or columns, and
also if we take the transpose

• For the transpose AT , we exchange rows and columns
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Example: Cramer’s rule

Problem 17, section 3:
Use Cramer’s rule to find x and t from the Lorentz equations,

γx − γvt = x ′

−γv

c2
x + γt = t ′

Write in matrix form,(
γ −γv
−γv

c2 γ

)(
x
t

)
=

(
x ′

t ′

)
We need

D =

∣∣∣∣ γ −γv
−γv

c2 γ

∣∣∣∣ = γ2 − γ2v2/c2 = 1
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continued...

Then we find from Cramer’s rule,

x =

∣∣∣∣ x ′ −γv
t ′ γ

∣∣∣∣
D

= γx ′ + γvt ′

t =

∣∣∣∣ γ x ′

−γv
c2 t ′

∣∣∣∣
D

= γt ′ +
γv

c2
x ′
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