
Solving differential equations with Fourier transforms

• Consider a damped simple harmonic oscillator with damping γ
and natural frequency ω0 and driving force f (t)

d2y

dt2
+ 2b

dy

dt
+ ω2

0y = f (t)

• At t = 0 the system is at equilibrium y = 0 and at rest so dy
dt = 0

• We subject the system to an force acting at t = t ′,
f (t) = δ(t − t ′), with t ′ > 0
• We take y(t) =

∫∞
−∞ g(ω)e iωtdω and f (t) =

∫∞
−∞ f (ω)e iωtdω



Example continued

• Substitute into the differential equation and we find[
ω2

0 − ω2 + 2ibω
]
g(ω) = f (ω)

• We find also f (ω) = 1
2π

∫∞
−∞ δ(t − t ′)e−iωtdt = 1

2π e−iωt′

• We find a relationship between the g(ω) and f (ω), and then we
can write for the response g(ω)

g(ω) =
1

2π

e−iωt′

ω2
0 − ω2 + 2ibω

• Then with y(t) = 0 for t < t ′, we get y(t) for t > t ′

y(t) =
1

2π

∫ ∞
−∞

e iω(t−t′)

ω2
0 − ω2 + 2ibω

dω



Example continued

• The integral is hard to do (we might get to later), but the point
is we have reduced the problem to doing an integral
• Assume b < ω0, then we find for y(t) with t > t ′,

y(t) = e−b(t−t′) sin [ω′(t − t ′)]

ω′

where ω′ =
√
ω2

0 − b2 and y(t) = 0 for t < t ′

• You can convince yourself that this is consistent with the b = 0
case described in the book (see Eq. 12.5 in chapter 8)



Green functions: An introduction

• We can use as an example the damped simple harmonic
oscillator subject to a driving force f (t) (The book example
corresponds to γ = 0)

d2y

dt2
+ 2b

dy

dt
+ ω2

0y = f (t)

• Now that we know the properties of the Dirac delta function, we
notice that f (t) =

∫∞
−∞ f (t ′)δ(t − t ′)dt ′

• This gives a hint that we can treat f (t) as a sequence of
delta-function impulses



Green functions: Damped harmonic oscillator

d2y

dt2
+ 2b

dy

dt
+ ω2

0y = f (t)

• Let’s say f (t) is zero for t < 0, and also y(t) = 0 for t < 0, and
then we turn on the driving force f (t)
• Using our insight, and the principle of superposition, we assume
that the response (y(t)) depends on the entire history of the force
f (t ′) from 0 < t ′ < t,

y(t) =

∫ t

0
G (t, t ′)f (t ′)dt ′



Green function for damped oscillator

• Substitute this into the equation of motion

d2y

dt2
+ 2b

dy

dt
+ ω2

0y = f (t)

• Use y(t) =
∫ t
0 G (t, t ′)f (t ′)dt ′ and f (t) =

∫∞
0 f (t ′)δ(t ′ − t)dt ′

∫ t

0
f (t ′)

[(
d2

dt2
+ 2b

d

dt
+ ω2

0

)
G (t, t ′)

]
dt ′ =

∫ ∞
0

f (t ′)δ(t ′−t)dt ′



continued

• We see that the Green function G (t, t ′) solves the differential
equation, (

d2

dt2
+ 2b

d

dt
+ ω2

0

)
G (t, t ′) = δ(t ′ − t)

• Note also that G (t, t ′) = 0 for t < t ′

• We already solved that! It was just the response y(t) due to a

δ-function impulse, with ω′ =
√
ω2

0 − b2

G (t, t ′) = e−b(t−t′) sin [ω′(t − t ′)]

ω′

• Notice that the response only depends on t − t ′, as we expect
• This was for the underdamped case (b < ω0), and would not
work for critical or overdamped cases!



Last one! Green function for damped oscillator

• Finally we can write the solution y(t) for any driving force f (t)
turned on at t = 0, for the damped oscillator in the underdamped
regime,

y(t) =

∫ t

0
G (t, t ′)f (t ′)dt ′ =

∫ t

0
e−b(t−t′) sin [ω′(t − t ′)]

ω′
f (t ′)dt ′



Green functions continued

• Quite powerful! As long as differential equation is linear, we can
find the Green (response) function which completely solves any
problem
• Another example: Electrostatics
• We know that the electrostatic potential φ(~r) due to a
continuous charge distribution ρ(~r ′) is simply additive

φ(~r) =
1

4πε0

∫
ρ(~r ′)

|~r −~r ′|
d3~r ′

• Because of this, Gauss’ Law is a linear differential equation,

~∇ · ~E =
ρ

ε0

• Then, since E = −~∇φ, we have

∇2φ = − ρ
ε0



Green function for electrostatics

• We will see that G (~r ,~r ′) = 1
4πε0

1
|~r−~r ′|

• First, take note that ρ(~r) =
∫
ρ(~r ′)δ(~r −~r ′)d3~r ′

• It might be more clear if we note that ~r = x î + y ĵ + zk̂ and
~r ′ = x ′̂i + y ′ ĵ + z ′k̂ , and then

ρ(~r) =

∫ ∫ ∫
ρ(~r ′)δ(x − x ′)δ(y − y ′)δ(z − z ′)dx ′dy ′dz ′

• Next we use that the potential φ(~r) is found just by adding up
the contributions due to each part of ρ(~r ′), so

φ(~r) =

∫
G (~r ,~r ′)ρ(~r ′)d3~r ′



Green function for electrostatics

• Substitute into the Gauss Law expression ∇2φ = − ρ
ε0∫

∇2G (~r ,~r ′)ρ(~r ′)d3~r ′ = − 1

ε0

∫
ρ(~r ′)δ(~r −~r ′)d3~r ′

• Noting that the ∇2 is with respect to ~r (and not ~r ′, we get the
equation for the Green function

∇2G (~r ,~r ′) = − 1

ε0
δ(~r −~r ′)

• Then G (~r ,~r ′) is just the potential at ~r due to a unit charge
located at ~r ′

• Since we know Coulomb’s Law, we can see right away that
G (~r ,~r ′) = 1

4πε0
1

|~r−~r ′|



Solving Gauss’ Law equation in differential form to find the
Green function

∇2G (~r ,~r ′) = − 1

ε0
δ(~r −~r ′)


