Solving differential equations with Fourier transforms

ullet Consider a damped simple harmonic oscillator with damping γ and natural frequency ω_0 and driving force f(t)

$$\frac{d^2y}{dt^2} + 2b\frac{dy}{dt} + \omega_0^2 y = f(t)$$

- At t=0 the system is at equilibrium y=0 and at rest so $\frac{dy}{dt}=0$
- We subject the system to an force acting at t=t',

$$f(t) = \delta(t - t')$$
, with $t' > 0$

• We take $y(t) = \int_{-\infty}^{\infty} g(\omega) e^{i\omega t} d\omega$ and $f(t) = \int_{-\infty}^{\infty} f(\omega) e^{i\omega t} d\omega$

Example continued

Substitute into the differential equation and we find

$$\left[\omega_0^2 - \omega^2 + 2ib\omega\right]g(\omega) = f(\omega)$$

- We find also $f(\omega)=rac{1}{2\pi}\int_{-\infty}^{\infty}\delta(t-t')e^{-i\omega t}dt=rac{1}{2\pi}e^{-i\omega t'}$
- We find a relationship between the $g(\omega)$ and $f(\omega)$, and then we can write for the response $g(\omega)$

$$g(\omega) = \frac{1}{2\pi} \frac{e^{-i\omega t'}}{\omega_0^2 - \omega^2 + 2ib\omega}$$

ullet Then with y(t) = 0 for t < t', we get y(t) for t > t'

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega(t-t')}}{\omega_0^2 - \omega^2 + 2ib\omega} d\omega$$

Example continued

- The integral is hard to do (we might get to later), but the point is we have reduced the problem to doing an integral
- Assume $b < \omega_0$, then we find for y(t) with t > t',

$$y(t) = e^{-b(t-t')} \frac{\sin \left[\omega'(t-t')\right]}{\omega'}$$

where
$$\omega' = \sqrt{\omega_0^2 - b^2}$$
 and $y(t) = 0$ for $t < t'$

ullet You can convince yourself that this is consistent with the b=0 case described in the book (see Eq. 12.5 in chapter 8)

Green functions: An introduction

• We can use as an example the damped simple harmonic oscillator subject to a driving force f(t) (The book example corresponds to $\gamma = 0$)

$$\frac{d^2y}{dt^2} + 2b\frac{dy}{dt} + \omega_0^2 y = f(t)$$

- Now that we know the properties of the Dirac delta function, we notice that $f(t) = \int_{-\infty}^{\infty} f(t') \delta(t-t') dt'$
- ullet This gives a hint that we can treat f(t) as a sequence of delta-function impulses

Green functions: Damped harmonic oscillator

$$\frac{d^2y}{dt^2} + 2b\frac{dy}{dt} + \omega_0^2 y = f(t)$$

- Let's say f(t) is zero for t < 0, and also y(t) = 0 for t < 0, and then we turn on the driving force f(t)
- Using our insight, and the principle of superposition, we assume that the response (y(t)) depends on the entire history of the force f(t') from 0 < t' < t,

$$y(t) = \int_0^t G(t, t') f(t') dt'$$

Green function for damped oscillator

• Substitute this into the equation of motion

$$\frac{d^2y}{dt^2} + 2b\frac{dy}{dt} + \omega_0^2 y = f(t)$$

• Use $y(t) = \int_0^t G(t,t')f(t')dt'$ and $f(t) = \int_0^\infty f(t')\delta(t'-t)dt'$

$$\int_0^t f(t') \left[\left(\frac{d^2}{dt^2} + 2b \frac{d}{dt} + \omega_0^2 \right) G(t, t') \right] dt' = \int_0^\infty f(t') \delta(t' - t) dt'$$

continued

ullet We see that the *Green function* G(t,t') solves the differential equation,

$$\left(rac{d^2}{dt^2}+2brac{d}{dt}+\omega_0^2
ight) G(t,t')=\delta(t'-t)$$

- Note also that G(t, t') = 0 for t < t'
- We already solved that! It was just the response y(t) due to a δ -function impulse, with $\omega'=\sqrt{\omega_0^2-b^2}$

$$G(t,t') = e^{-b(t-t')} \frac{\sin \left[\omega'(t-t')\right]}{\omega'}$$

- ullet Notice that the response only depends on t-t', as we expect
- This was for the underdamped case ($b < \omega_0$), and would not work for critical or overdamped cases!

Last one! Green function for damped oscillator

• Finally we can write the solution y(t) for any driving force f(t) turned on at t=0, for the damped oscillator in the underdamped regime,

$$y(t) = \int_0^t G(t, t') f(t') dt' = \int_0^t e^{-b(t-t')} \frac{\sin \left[\omega'(t-t')\right]}{\omega'} f(t') dt'$$

Green functions continued

- Quite powerful! As long as differential equation is linear, we can find the Green (response) function which completely solves any problem
- Another example: Electrostatics
- We know that the electrostatic potential $\phi(\vec{r})$ due to a continuous charge distribution $\rho(\vec{r}')$ is simply additive

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'$$

• Because of this, Gauss' Law is a linear differential equation,

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

• Then, since $E = -\vec{\nabla}\phi$, we have

$$\nabla^2 \phi = -\frac{\rho}{\epsilon_0}$$

Green function for electrostatics

- ullet We will see that $G(ec r,ec r')=rac{1}{4\pi\epsilon_0}rac{1}{|ec r-ec r'|}$
- First, take note that $\rho(\vec{r}) = \int \rho(\vec{r'}) \delta(\vec{r} \vec{r}') d^3 \vec{r}'$
- It might be more clear if we note that $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{r}' = x'\hat{i} + y'\hat{j} + z'\hat{k}$, and then

$$\rho(\vec{r}) = \int \int \int \rho(\vec{r'}) \delta(x - x') \delta(y - y') \delta(z - z') dx' dy' dz'$$

• Next we use that the potential $\phi(\vec{r})$ is found just by adding up the contributions due to each part of $\rho(\vec{r}')$, so

$$\phi(\vec{r}) = \int G(\vec{r}, \vec{r}') \rho(\vec{r}') d^3 \vec{r}'$$

Green function for electrostatics

ullet Substitute into the Gauss Law expression $abla^2\phi=-rac{
ho}{\epsilon_0}$

$$\int \nabla^2 G(\vec{r}, \vec{r}') \rho(\vec{r}') d^3 \vec{r}' = -\frac{1}{\epsilon_0} \int \rho(\vec{r'}) \delta(\vec{r} - \vec{r}') d^3 \vec{r}'$$

 \bullet Noting that the ∇^2 is with respect to \vec{r} (and not \vec{r}' , we get the equation for the Green function

$$\nabla^2 G(\vec{r}, \vec{r}') = -\frac{1}{\epsilon_0} \delta(\vec{r} - \vec{r}')$$

- Then $G(\vec{r}, \vec{r}')$ is just the potential at \vec{r} due to a unit charge located at \vec{r}'
- Since we know Coulomb's Law, we can see right away that $G(\vec{r},\vec{r}')=rac{1}{4\pi\epsilon_0}rac{1}{|\vec{r}-\vec{r}'|}$

Solving Gauss' Law equation in differential form to find the Green function

$$abla^2 G(\vec{r}, \vec{r}') = -\frac{1}{\epsilon_0} \delta(\vec{r} - \vec{r}')$$