
Even and odd functions

• We define an even function such that f (−x) = f (x)
• We define an odd function such that f (−x) = −f (x)
• Example, sin x is an odd function because sin−x = − sin x
• Example, cos x is an even function because cos−x = cos x
• Now consider a Fourier series of a periodic, even function f (x)
(f (−x) = f (x)), over the interval −π < x < π

f (x) =
a0

2
+
∞∑

n=1

an cos nx +
∞∑

n=1

bn sin nx

• Now consider the integrals to determine the coefficients, first a0

a0 =
1

π

∫ π

−π
f (x)dx =

2

π

∫ π

0
f (x)dx



Even/odd functions continued

• Next the an for finite n, we again use the fact that f (x) is even,
and also cos nx is even,

an =
1

π

∫ π

−π
f (x) cos nxdx =

2

π

∫ π

0
f (x) cos nxdx

• Next we can show bn = 0 when f (x) is even,

bn =
1

π

[∫ π

0
f (x) sin nxdx −

∫ π

0
f (x) sin nxdx

]
= 0



Even/odd functions continued

• We can also treat the odd case f (−x) = −f (x), then

a0 =
1

π

∫ π

−π
f (x)dx = 0

an =
1

π

[∫ π

0
f (x) cos nxdx −

∫ π

0
f (x) cos nxdx

]
= 0

bn =
1

π

∫ π

−π
f (x) sin nxdx =

2

π

∫ π

0
f (x) sin nxdx



Example of an odd function

• The step function provides us an example of an odd function
• For the step function, we found a0 = 1, so actually it is neither
odd nor even, but if we define the step function as f (x) = −1/2 for
−π < x < 0 and f (x) = 1/2 for 0 < x < π, then f (x) is odd and

f (x) =
2

π

(
sin x

1
+

sin 3x

3
+

sin 5x

5
+ ...

)
• The point is that the cos nx terms vanish (an = 0 for all n)
• The advantage is that we could have predicted that an = 0 for
all n even before trying to do the integral



Another example: even function

• Find the expansion for f (x) = x2 on the interval −π < x < π,
periodically repeating with period 2π
• For this case, f (x) is clearly even since
f (−x) = (−x)2 = x2 = f (x), hence bn = 0 for each n, and

an =
2

π

∫ π

0
x2 cos nxdx

• We find a0 = 2π2

3
• For the other n, we evaluate the integral (homework!)

2

π

∫ π

0
x2 cos nxdx =

4

n2
(−1)n

f (x) =
π2

3
+ 4

[
−cos x

1
+

cos 2x

4
− cos 3x

9
+ ...

]



Parseval’s theorem

• For a periodic function f (x) defined on −l < x < l , we have

f (x) =
a0

2
+
∞∑

n=1

an cos
nπx

l
+
∞∑

n=1

bn sin
nπx

l

• The average of [f (x)]2 is 1
2l

∫ l
−l [f (x)]2dx

• To obtain Parseval’s theorm, use the integrals we obtained before

1

2l

∫ l

−l
sin

mπx

l
sin

nπx

l
dx =

1

2
δm,n

1

2l

∫ l

−l
cos

mπx

l
cos

nπx

l
dx =

1

2
δm,n

1

2l

∫ l

−l
sin

mπx

l
cos

nπx

l
dx = 0



Parseval’s theorem continued

• Using the previous integrals, we find

1

2l

∫ l

−l
[f (x)]2dx =

(
1

2
a0

)2

+
1

2

∞∑
n=1

(a2
n + b2

n)

• Example: Problem 5.8 and Problem 11.7
• Find the Fourier series for f (x) = 1 + x defined on −π < x < π

a0 =
1

π

∫ π

−π
(1 + x)dx = 2

an =
1

π

∫ π

−π
(1 + x) cos nxdx = 0

bn =
1

π

∫ π

−π
(1 + x) sin nxdx =

2(−1)n+1

n



Example of Parseval’s theorem continued

• Then Parseval’s theorem states,

1

2π

∫ π

−π
(1 + x)2dx = 1 +

1

2

∞∑
n=1

4

n2
= 1 + 2

∞∑
n=1

1

n2

• Problem 11.8 asks us to evaluate
∑∞

n=1
1
n2 , and from Parseval’s

theorem we see that,

∞∑
n=1

1

n2
= −1

2
+

1

4π

∫ π

−π
(1 + x)2dx =

π2

6

• Might even use to compute π!

π =
√

6

[ ∞∑
n=1

1

n2

]1/2



For the fun of it... π

• Exact value of π = 3.141592653589793 (Correct to 16 digits...
my computer using intrinsic functions got the digits after these
incorrect)
• From serious on previous page, I got the following results:
104 terms: 3.141497163947214
105 terms: 3.141583104326456
106 terms: 3.141591698660508
107 terms: 3.141592558095902
• Correct to 7 digits for 107 terms, and took < 1 second to
compute



Parseval’s theorem for complex Fourier series

• When we average |f (x)|2 = f ∗(x)f (x) over one period, we
obtain

∑∞
n=−∞ |cn|2

• Proof in problem 3, for f (x) periodic with periodicity 2π
(−π < x < π)

f (x) =
∞∑

n=−∞
cne

inx

• We use the orthogonality of the functions e inx ,

1

2π

∫ π

−π
e i(n−m)xdx = δm,n

1

2π

∫ π

−π
f ∗(x)f (x)dx =

1

2π

∞∑
m=1

∞∑
n=1

c∗mcn

∫ π

−π
e i(m−n)xdx =

∞∑
n=−∞

c∗ncn



Another example: problem 2

• We can also average [f (x)]2 using the complex series (contrast
to averaging |f (x)|2 = f ∗(x)f (x))

1

2π

∫ π

−π
[f (x)]2dx =

1

2π

∞∑
m=1

∞∑
n=1

cmcn

∫ π

−π
e i(m+n)xdx =

∞∑
n=−∞

cnc−n

• Consider the special case where f (x) is real, then the expansion
in complex Fourier series is

f (x) =
∞∑

n=−∞
cne

inx = c0 +
∞∑

n=1

(
cne

inx + c−ne
−inx

)
• Since f (x) is real, the complex parts must cancel, so using the
Euler formula



Problem 2 continued

f (x) = c0 +
∞∑

n=1

(cn + c−n) cos nx +
∞∑

n=1

(icn − ic−n) sin nx

• For the imaginary parts to go away, we require c−n = c∗n

cn + c−n = cn + c∗n = 2Re[cn]

icn − ic−n = icn − ic∗n = −2Im[cn]

• Then for real f (x), we obtain

1

2π

∫ π

−π
[f (x)]2dx =

1

2π

∞∑
m=1

∞∑
n=1

cmcn

∫ π

−π
e i(m+n)xdx =

∞∑
n=−∞

c∗ncn


