
Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of
physics. For example, Newton’s 2nd law is ~F = m d2~r

dt2 . In electricity
and magnetism, we need surface and volume integrals of various
fields. Fields can be scalar in some cases, but often they are vector
fields like ~E (x , y , z) and ~B(x , y , z)
By the end of the chapter you should be able to

I Work with various vector products including triple products

I Differentiate vectors

I Use directional derivatives and the gradient

I Divergence and curl

I Line integrals

I Divergence theorem, Green theorem in plane, and Stokes
theorem
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Application of vector multiplication

• We have seen the dot or scalar product, which in a Cartesian
system we can write as

~A · ~B = AxBx + AyBy + AzBz

• We also saw that ~A · ~B = |~A||~B| cos θ
• An example is computing work W (a scalar) due to a force ~F
along a path d~r

dW = ~F · d~r
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Vector or cross products

• We saw for cross products, or vector products

~A× ~B = ~C

• We saw ~C is perpendicular to ~A and ~B, and |~C | = |~A||~B| sin θ
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Application for cross or vector products

• In computing torque ~τ about some point O, we use a cross
product

~τ = ~r × ~F

• From this relationship we can find the change in angular

momentum with time τ = d~L
dt (For example, ~L = I~ω)

• We might have the axis of rotation not parallel to the torque
τ = ~r × ~F
• In this case, if n̂ is the direction of the axis (unit vector), then
the torque about that axis is (with the point O somewhere along
the axis)

τ = n̂ · (~r × ~F )
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Example: Torque about a point and a line, problem 19

• For a force ~F = î + 3ĵ + 2k̂ acting at the point (1,1,1), find the
torque about the point (2,-1,5)
• We find the vector ~r from

~r = (1− 2)̂i + (1 + 1)̂j + (1− 5)k̂ = −î + 2ĵ − 4k̂

• Then we find the torque from ~r × ~F

τ = ~r × ~F =

∣∣∣∣∣∣
î ĵ k̂
rx ry rz
Fx Fy Fz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
î ĵ k̂
−1 2 −4
1 3 2

∣∣∣∣∣∣ = 16̂i − 2ĵ − 5k̂
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Torque about about a line, continuation of problem 19

• In problem 19b, we want torque about the line

~n = 2̂i − ĵ + 5k̂ + (̂i − ĵ + 2k̂)t

• This is a parametric equation with t a continuous parameter
• The unit vector n̂ = 1√

6
î − 1√

6
ĵ + 2√

6
k̂

• From t = 0 notice the line passes through the point (2,-1,5)
• We can still find the vector ~r to the point on the line (2,-1,5), so
~r = −î + 2ĵ − 4k̂

τ = n̂ · (~r × ~F ) = (
1√
6
î − 1√

6
ĵ +

2√
6
k̂) · (16̂i − 2ĵ − 5k̂) =

8√
6

• Notice we get a scalar, which is the component of τ along the n̂
direction. We could also write ~τ = τ n̂ = 4

3 î − 4
3 ĵ + 8

3 k̂
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Relationship between linear and angular momentum and
velocity

• The relationship between linear and angular velocity of a point in
a rotating rigid body is given by,

~v = ~ω ×~r

• The relationship between angular momentum and linear
momentum is given by

~L = ~r × ~p = m~r × ~v

• We can combine these relations to get,

~L = m~r × (~ω ×~r)
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Centripetal acceleration

• For a mass rotating with constant angular velocity ~ω, the
centripetal acceleration is

~a =
d~v

dt
=

d

dt
(~ω ×~r) = ~ω × d~r

dt
= ~ω × (~ω ×~r)
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Example of centripetal acceleration, Section 3, Problem 17

• If ~r is perpendicular to ~ω, show ~a = −ω2~r and show the
acceleration is toward the axis of rotation with magnitude a = v2

r
• Start with ~a = ~ω × (~ω ×~r)
• Since ~ω and ~r are perpendicular, θ = π/2
• Then |~ω ×~r | = ωr
• ~ω ×~r is also perpendicular to ~ω, so |~ω × (~ω ×~r)| = ω2r
• From the right-hand rule it is easy to see then that ~a = −ω2~r
• Finally v = |~v | = |~ω ×~r | = ωr , or ω = v/r and a = ω2r = v2

r

Patrick K. Schelling Introduction to Theoretical Methods



Triple products

• We have already seen that the volume of a parallelpiped from ~A,
~B, and ~C can be found

~A · (~B × ~C ) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
• It is also useful to be able to find the vector product ~A× (~B × ~C )

~A× (~B × ~C ) = (~A · ~C )~B − (~A · ~B)~C
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Differentiation of vectors

• In a Cartesian system, î , ĵ , and k̂ are fixed unit vectors
• If we have a vector ~A = Ax î + Ay ĵ + Az k̂, where the components
are functions of t, then we can take a derivative

d~A

dt
=

dAx

dt
î +

dAy

dt
ĵ +

dAz

dt
k̂

• For example, ~A could be the position of a particle, and then the
time derivative is the velocity. If ~A is the velocity, then the time
derivative is the acceleration.
• What do we do if the vector is described in another coordinate
systems that does not have fixed unit vectors?
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Differentiation of vectors in a polar system

• We can express ~A in the xy-plane using unit vectors in a polar
system

~A = Ax î + Ay ĵ = Ar êr + Aθ êθ

• The î and ĵ unit vectors have a fixed direction, but êr and êθ do
not
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