Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of physics. For example, Newton's 2nd law is $\vec{F}=m \frac{d^{2} \vec{F}}{d t^{2}}$. In electricity and magnetism, we need surface and volume integrals of various fields. Fields can be scalar in some cases, but often they are vector fields like $\vec{E}(x, y, z)$ and $\vec{B}(x, y, z)$
By the end of the chapter you should be able to

- Work with various vector products including triple products

Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of physics. For example, Newton's 2nd law is $\vec{F}=m \frac{d^{2} \vec{F}}{d t^{2}}$. In electricity and magnetism, we need surface and volume integrals of various fields. Fields can be scalar in some cases, but often they are vector fields like $\vec{E}(x, y, z)$ and $\vec{B}(x, y, z)$
By the end of the chapter you should be able to

- Work with various vector products including triple products
- Differentiate vectors

Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of physics. For example, Newton's 2nd law is $\vec{F}=m \frac{d^{2} \vec{r}}{d t^{2}}$. In electricity and magnetism, we need surface and volume integrals of various fields. Fields can be scalar in some cases, but often they are vector fields like $\vec{E}(x, y, z)$ and $\vec{B}(x, y, z)$
By the end of the chapter you should be able to

- Work with various vector products including triple products
- Differentiate vectors
- Use directional derivatives and the gradient

Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of physics. For example, Newton's 2nd law is $\vec{F}=m \frac{d^{2} \vec{r}}{d t^{2}}$. In electricity and magnetism, we need surface and volume integrals of various fields. Fields can be scalar in some cases, but often they are vector fields like $\vec{E}(x, y, z)$ and $\vec{B}(x, y, z)$
By the end of the chapter you should be able to

- Work with various vector products including triple products
- Differentiate vectors
- Use directional derivatives and the gradient
- Divergence and curl

Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of physics. For example, Newton's 2nd law is $\vec{F}=m \frac{d^{2} \vec{r}}{d t^{2}}$. In electricity and magnetism, we need surface and volume integrals of various fields. Fields can be scalar in some cases, but often they are vector fields like $\vec{E}(x, y, z)$ and $\vec{B}(x, y, z)$
By the end of the chapter you should be able to

- Work with various vector products including triple products
- Differentiate vectors
- Use directional derivatives and the gradient
- Divergence and curl
- Line integrals

Chapter 6: Vector Analysis

We use derivatives and various products of vectors in all areas of physics. For example, Newton's 2nd law is $\vec{F}=m \frac{d^{2} \vec{r}}{d t^{2}}$. In electricity and magnetism, we need surface and volume integrals of various fields. Fields can be scalar in some cases, but often they are vector fields like $\vec{E}(x, y, z)$ and $\vec{B}(x, y, z)$
By the end of the chapter you should be able to

- Work with various vector products including triple products
- Differentiate vectors
- Use directional derivatives and the gradient
- Divergence and curl
- Line integrals
- Divergence theorem, Green theorem in plane, and Stokes theorem

Application of vector multiplication

- We have seen the dot or scalar product, which in a Cartesian system we can write as

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

- We also saw that $\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta$
- An example is computing work W (a scalar) due to a force \vec{F} along a path $d \vec{r}$

$$
d W=\vec{F} \cdot d \vec{r}
$$

Vector or cross products

- We saw for cross products, or vector products

$$
\vec{A} \times \vec{B}=\vec{C}
$$

- We saw \vec{C} is perpendicular to \vec{A} and \vec{B}, and $|\vec{C}|=|\vec{A}||\vec{B}| \sin \theta$

Application for cross or vector products

- In computing torque $\vec{\tau}$ about some point O, we use a cross product

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

- From this relationship we can find the change in angular momentum with time $\tau=\frac{d \vec{L}}{d t}$ (For example, $\vec{L}=I \vec{\omega}$)
- We might have the axis of rotation not parallel to the torque $\tau=\vec{r} \times \vec{F}$
- In this case, if \hat{n} is the direction of the axis (unit vector), then the torque about that axis is (with the point O somewhere along the axis)

$$
\tau=\hat{n} \cdot(\vec{r} \times \vec{F})
$$

Example: Torque about a point and a line, problem 19

- For a force $\vec{F}=\hat{i}+3 \hat{j}+2 \hat{k}$ acting at the point $(1,1,1)$, find the torque about the point $(2,-1,5)$
- We find the vector \vec{r} from

$$
\vec{r}=(1-2) \hat{i}+(1+1) \hat{j}+(1-5) \hat{k}=-\hat{i}+2 \hat{j}-4 \hat{k}
$$

- Then we find the torque from $\vec{r} \times \vec{F}$

$$
\tau=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 2 & -4 \\
1 & 3 & 2
\end{array}\right|=16 \hat{i}-2 \hat{j}-5 \hat{k}
$$

Torque about about a line, continuation of problem 19

- In problem 19b, we want torque about the line

$$
\vec{n}=2 \hat{i}-\hat{j}+5 \hat{k}+(\hat{i}-\hat{j}+2 \hat{k}) t
$$

- This is a parametric equation with t a continuous parameter
- The unit vector $\hat{n}=\frac{1}{\sqrt{6}} \hat{i}-\frac{1}{\sqrt{6}} \hat{j}+\frac{2}{\sqrt{6}} \hat{k}$
- From $t=0$ notice the line passes through the point $(2,-1,5)$
- We can still find the vector \vec{r} to the point on the line $(2,-1,5)$, so $\vec{r}=-\hat{i}+2 \hat{j}-4 \hat{k}$

$$
\tau=\hat{n} \cdot(\vec{r} \times \vec{F})=\left(\frac{1}{\sqrt{6}} \hat{i}-\frac{1}{\sqrt{6}} \hat{j}+\frac{2}{\sqrt{6}} \hat{k}\right) \cdot(16 \hat{i}-2 \hat{j}-5 \hat{k})=\frac{8}{\sqrt{6}}
$$

- Notice we get a scalar, which is the component of τ along the \hat{n} direction. We could also write $\vec{\tau}=\tau \hat{n}=\frac{4}{3} \hat{i}-\frac{4}{3} \hat{j}+\frac{8}{3} \hat{k}$

Relationship between linear and angular momentum and velocity

- The relationship between linear and angular velocity of a point in a rotating rigid body is given by,

$$
\vec{v}=\vec{\omega} \times \vec{r}
$$

- The relationship between angular momentum and linear momentum is given by

$$
\vec{L}=\vec{r} \times \vec{p}=m \vec{r} \times \vec{v}
$$

- We can combine these relations to get,

$$
\vec{L}=m \vec{r} \times(\vec{\omega} \times \vec{r})
$$

Centripetal acceleration

- For a mass rotating with constant angular velocity $\vec{\omega}$, the centripetal acceleration is

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}(\vec{\omega} \times \vec{r})=\vec{\omega} \times \frac{d \vec{r}}{d t}=\vec{\omega} \times(\vec{\omega} \times \vec{r})
$$

Example of centripetal acceleration, Section 3, Problem 17

- If \vec{r} is perpendicular to $\vec{\omega}$, show $\vec{a}=-\omega^{2} \vec{r}$ and show the acceleration is toward the axis of rotation with magnitude $a=\frac{v^{2}}{r}$
- Start with $\vec{a}=\vec{\omega} \times(\vec{\omega} \times \vec{r})$
- Since $\vec{\omega}$ and \vec{r} are perpendicular, $\theta=\pi / 2$
- Then $|\vec{\omega} \times \vec{r}|=\omega r$
- $\vec{\omega} \times \vec{r}$ is also perpendicular to $\vec{\omega}$, so $|\vec{\omega} \times(\vec{\omega} \times \vec{r})|=\omega^{2} r$
- From the right-hand rule it is easy to see then that $\vec{a}=-\omega^{2} \vec{r}$
- Finally $v=|\vec{v}|=|\vec{\omega} \times \vec{r}|=\omega r$, or $\omega=v / r$ and $a=\omega^{2} r=\frac{v^{2}}{r}$

Triple products

- We have already seen that the volume of a parallelpiped from \vec{A}, \vec{B}, and \vec{C} can be found

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

- It is also useful to be able to find the vector product $\vec{A} \times(\vec{B} \times \vec{C})$

$$
\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}
$$

Differentiation of vectors

- In a Cartesian system, \hat{i}, \hat{j}, and \hat{k} are fixed unit vectors
- If we have a vector $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$, where the components are functions of t, then we can take a derivative

$$
\frac{d \vec{A}}{d t}=\frac{d A_{x}}{d t} \hat{i}+\frac{d A_{y}}{d t} \hat{j}+\frac{d A_{z}}{d t} \hat{k}
$$

- For example, \vec{A} could be the position of a particle, and then the time derivative is the velocity. If \vec{A} is the velocity, then the time derivative is the acceleration.
- What do we do if the vector is described in another coordinate systems that does not have fixed unit vectors?

Differentiation of vectors in a polar system

- We can express \vec{A} in the xy-plane using unit vectors in a polar system

$$
\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}=A_{r} \hat{e}_{r}+A_{\theta} \hat{e}_{\theta}
$$

- The \hat{i} and \hat{j} unit vectors have a fixed direction, but \hat{e}_{r} and \hat{e}_{θ} do not

