Laplace equation in Cartesian coordinates

e The Laplace equation is written

V24 =0
e For example, let us work in two dimensions so we have to find
¢(x,y) from,
¢ 0% _,
ox2  0y?

e We use the method of separation of variables and write
P(x,y) = X(x)Y(y)

X// Y/l
x Ty 0



Laplace equation in Cartesian coordinates, continued

e Again we have two terms that only depend on one independent
variable, so

Y//
7 =

e This is called a Helmholtz equation (we've seen in before), and
we can write it

iy

Y+ kY =0
e The we have another equation to solve,
X" — kX =0

e Here kisreal and k>0
e Could we have done this a different way? Yes!



Laplace equation in Cartesian coordiates, continued

e We could have a different sign for the constant, and then
Y'— kY =0

e The we have another equation to solve,
X"+ k*X =0

e We will see that the choice will determine the nature of the
solutions, which in turn will depend on the boundary conditions



Steady-state temperature in a semi-infinite plate

e Imagine a metal plate bounded at y = 0 but extending to infinity
in the 4y direction, and from x = 0 to x = 10
e Hold the y = 0 surface at T =100, andas y — 400, T =0
e Surface at x = 0 and x = 10 are both held at T =0
e Find the scalar temperature field T(x,y) inside the plate
e Again we solve V2T =0, or a 92T 4 %ZT =0
e We apply separation of variables T(x, y) X(x)Y(y), and
choose the sign of the constant carefully!
X// y//

Sty =0



Steady-state temperature in semi-infinite plate, continued

e We choose the sign of the constant to give us reasonable
behavior based on the boundary conditions

X"+ kX =0

Y" - k’Y =0

e From the first ordinary differential equation, we get

X(x) = sin kx and X(x) = cos kx

e Since T = 0 at x = 0, the cos kx solution does not work

e Boundary condition T =0 at x = 10 means we have solutions
Xn(x) = sin 5, with n =1,2,3, ...



Steady-state temperature in semi-infinite plate, continued

e Now the equation for Y(y), taking care that we now have
K2 = (532

Y —k2Y =0

o We get solutions Y,(y) = ek and Y,(y) = e~k

e Since T =0 as y — 00, we have Y(y) = e %y = ¢=nmy/10
e We can then write the general solutions that satisfy the
boundary conditions as y — oo, and at x =0 and x = 10

T(x,y) = Z bre™ "™/ 105in nliox
n=1



Steady-state temperature in semi-infinite plate, continued

e To determine b, coefficients, use that T =100 at y =0
T(x,y = 0) = Zb s.n@—loo
e A Fourier series! We find the b, from

2 (10 . nmx 10 nmTx\ 190
by =g |, 100sin " = (20) () (—cosﬁ> 1

nm

e We find b, = % for odd n, and b, = 0 for even n

. 400 —7Ty/10 . TTX ]. —37ry/10 . 37TX ]_ —71'_)//2 . TTX
T = - <e sin 10+3e sin 10 —|—5e sin > + ...



Time-dependent diffusion or heat flow

o If V2T +# 0, then the temperature field becomes time-dependent
e Imagine a strip of metal, extending to oo in the y direction, but
bounded at x =0 and x =/

o At t = 0, the system is in steady-state with u =0 at x =0, and
u=100 at x =1

e The temperature profile at t = 0 satisfies V2u = 0, or Z— =0

e We find initially a temperature profile v = 1007

e Now abruptly set u=0at x=0and x =1/

e The temperature profile is now time-dependent

d?u 1 du

dx2 a2 dt



Time-dependent diffusion or heat flow, continued

e We apply separation of variables u(x, t) = T(t)X(x)

X" 1 T’ 2

X a2 T
o We find T = e K0’
e From the boundary conditions =0 at x =0 and x =/, we find
X =sin % with n =1,2,3, ...

Zb sin 10 (7

o We find the b, from the initial condition u(x,t = 0) = 1005



Time-dependent diffusion or heat flow, initial conditions

e We can solve for the initial conditions (t = 0)

100 > nmx

u(x,t=0) = —X_Zb,, |n—

e Notice compared to before, when we expanded periodic
functions, the yo(x) and vp(x) are not periodic with period /
e However, we can show that the sin “/* make a complete,
orthogonal set over the interval 0 < x </

e We find the b, then, using that

/
mmx nmx /
i in—adx = =6
/Osm ; sin ; Ix = 50mn

o We find that b, — 200U~



Time-dependent diffusion or heat flow, final answer

e Then we can finally write the series solution

200 | —(ra/ipe I _ o @ma/ie g %TX 4 e Gra/Pt g, 37TTX
s

u=

e Notice that as t — oo, we reach equilibrium T = 0 everywhere
e Another example, slightly different... final conditions involve a
temperature gradient



