Laplace equation in Cartesian coordinates

- The Laplace equation is written

$$
\nabla^{2} \phi=0
$$

- For example, let us work in two dimensions so we have to find $\phi(x, y)$ from,

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

- We use the method of separation of variables and write $\phi(x, y)=X(x) Y(y)$

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

Laplace equation in Cartesian coordinates, continued

- Again we have two terms that only depend on one independent variable, so

$$
\frac{Y^{\prime \prime}}{Y}=-k^{2}
$$

- This is called a Helmholtz equation (we've seen in before), and we can write it

$$
Y^{\prime \prime}+k^{2} Y=0
$$

- The we have another equation to solve,

$$
X^{\prime \prime}-k^{2} X=0
$$

- Here k is real and $k \geq 0$
- Could we have done this a different way? Yes!

Laplace equation in Cartesian coordiates, continued

- We could have a different sign for the constant, and then

$$
Y^{\prime \prime}-k^{2} Y=0
$$

- The we have another equation to solve,

$$
X^{\prime \prime}+k^{2} X=0
$$

- We will see that the choice will determine the nature of the solutions, which in turn will depend on the boundary conditions

Steady-state temperature in a semi-infinite plate

- Imagine a metal plate bounded at $y=0$ but extending to infinity
in the $+y$ direction, and from $x=0$ to $x=10$
- Hold the $y=0$ surface at $T=100$, and as $y \rightarrow+\infty, T=0$
- Surface at $x=0$ and $x=10$ are both held at $T=0$
- Find the scalar temperature field $T(x, y)$ inside the plate
- Again we solve $\nabla^{2} T=0$, or $\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0$
- We apply separation of variables $T(x, y)=X(x) Y(y)$, and choose the sign of the constant carefully!

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

Steady-state temperature in semi-infinite plate, continued

- We choose the sign of the constant to give us reasonable behavior based on the boundary conditions

$$
\begin{aligned}
& X^{\prime \prime}+k^{2} X=0 \\
& Y^{\prime \prime}-k^{2} Y=0
\end{aligned}
$$

- From the first ordinary differential equation, we get
$X(x)=\sin k x$ and $X(x)=\cos k x$
- Since $T=0$ at $x=0$, the $\cos k x$ solution does not work
- Boundary condition $T=0$ at $x=10$ means we have solutions $X_{n}(x)=\sin \frac{n \pi x}{10}$, with $n=1,2,3, \ldots$

Steady-state temperature in semi-infinite plate, continued

- Now the equation for $Y(y)$, taking care that we now have $k_{n}^{2}=\left(\frac{n \pi}{10}\right)^{2}$

$$
Y^{\prime \prime}-k_{n}^{2} Y=0
$$

- We get solutions $Y_{n}(y)=e^{k_{n} y}$ and $Y_{n}(y)=e^{-k_{n} y}$
- Since $T=0$ as $y \rightarrow \infty$, we have $Y_{n}(y)=e^{-k_{n} y}=e^{-n \pi y / 10}$
- We can then write the general solutions that satisfy the boundary conditions as $y \rightarrow \infty$, and at $x=0$ and $x=10$

$$
T(x, y)=\sum_{n=1}^{\infty} b_{n} e^{-n \pi y / 10} \sin \frac{n \pi x}{10}
$$

Steady-state temperature in semi-infinite plate, continued

- To determine b_{n} coefficients, use that $T=100$ at $y=0$

$$
T(x, y=0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{10}=100
$$

- A Fourier series! We find the b_{n} from

$$
b_{n}=\frac{2}{10} \int_{0}^{10} 100 \sin \frac{n \pi x}{10} d x=\left.(20)\left(\frac{10}{n \pi}\right)\left(-\cos \frac{n \pi x}{10}\right)\right|_{0} ^{10}
$$

- We find $b_{n}=\frac{400}{n \pi}$ for odd n, and $b_{n}=0$ for even n

$$
T=\frac{400}{\pi}\left(e^{-\pi y / 10} \sin \frac{\pi x}{10}+\frac{1}{3} e^{-3 \pi y / 10} \sin \frac{3 \pi x}{10}+\frac{1}{5} e^{-\pi y / 2} \sin \frac{\pi x}{2}+\ldots\right)
$$

Time-dependent diffusion or heat flow

- If $\nabla^{2} T \neq 0$, then the temperature field becomes time-dependent - Imagine a strip of metal, extending to $\pm \infty$ in the y direction, but bounded at $x=0$ and $x=1$
- At $t=0$, the system is in steady-state with $u=0$ at $x=0$, and $u=100$ at $x=1$
- The temperature profile at $t=0$ satisfies $\nabla^{2} u=0$, or $\frac{d^{2} u}{d x^{2}}=0$
- We find initially a temperature profile $u=100 \frac{x}{T}$
- Now abruptly set $u=0$ at $x=0$ and $x=1$
- The temperature profile is now time-dependent

$$
\frac{d^{2} u}{d x^{2}}=\frac{1}{\alpha^{2}} \frac{d u}{d t}
$$

Time-dependent diffusion or heat flow, continued

- We apply separation of variables $u(x, t)=T(t) X(x)$

$$
\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime}}{T}=-k^{2}
$$

- We find $T=e^{-k^{2} \alpha^{2} t}$
- From the boundary conditions $u=0$ at $x=0$ and $x=l$, we find $X=\sin \frac{n \pi x}{l}$ with $n=1,2,3, \ldots$

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} e^{-\left(\frac{n \pi x}{l}\right)^{2} t}
$$

- We find the b_{n} from the initial condition $u(x, t=0)=100 \frac{x}{T}$

Time-dependent diffusion or heat flow, initial conditions

- We can solve for the initial conditions $(t=0)$

$$
u(x, t=0)=\frac{100}{l} x=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

- Notice compared to before, when we expanded periodic functions, the $y_{0}(x)$ and $v_{0}(x)$ are not periodic with period I
- However, we can show that the $\sin \frac{n \pi x}{I}$ make a complete, orthogonal set over the interval $0<x<l$
- We find the b_{n} then, using that

$$
\int_{0}^{l} \sin \frac{m \pi x}{l} \sin \frac{n \pi x}{l} d x=\frac{l}{2} \delta_{m, n}
$$

- We find that $b_{n}=\frac{200}{\pi} \frac{(-1)^{n-1}}{n}$

Time-dependent diffusion or heat flow, final answer

- Then we can finally write the series solution

$$
u=\frac{200}{\pi}\left[e^{-(\pi \alpha / l)^{2} t} \sin \frac{\pi x}{l}-e^{-(2 \pi \alpha / l)^{2} t} \sin \frac{2 \pi x}{l}+e^{-(3 \pi \alpha / l)^{2} t} \sin \frac{3 \pi x}{l}-\right.
$$

- Notice that as $t \rightarrow \infty$, we reach equilibrium $T=0$ everywhere
- Another example, slightly different... final conditions involve a temperature gradient

