
Laplace equation in Cartesian coordinates

• The Laplace equation is written

∇2φ = 0

• For example, let us work in two dimensions so we have to find
φ(x , y) from,

∂2φ

∂x2
+
∂2φ

∂y2
= 0

• We use the method of separation of variables and write
φ(x , y) = X (x)Y (y)

X ′′

X
+

Y ′′

Y
= 0



Laplace equation in Cartesian coordinates, continued

• Again we have two terms that only depend on one independent
variable, so

Y ′′

Y
= −k2

• This is called a Helmholtz equation (we’ve seen in before), and
we can write it

Y ′′ + k2Y = 0

• The we have another equation to solve,

X ′′ − k2X = 0

• Here k is real and k ≥ 0
• Could we have done this a different way? Yes!



Laplace equation in Cartesian coordiates, continued

• We could have a different sign for the constant, and then

Y ′′ − k2Y = 0

• The we have another equation to solve,

X ′′ + k2X = 0

• We will see that the choice will determine the nature of the
solutions, which in turn will depend on the boundary conditions



Steady-state temperature in a semi-infinite plate

• Imagine a metal plate bounded at y = 0 but extending to infinity
in the +y direction, and from x = 0 to x = 10
• Hold the y = 0 surface at T = 100, and as y → +∞, T = 0
• Surface at x = 0 and x = 10 are both held at T = 0
• Find the scalar temperature field T (x , y) inside the plate

• Again we solve ∇2T = 0, or ∂2T
∂x2 + ∂2T

∂y2 = 0

• We apply separation of variables T (x , y) = X (x)Y (y), and
choose the sign of the constant carefully!

X ′′

X
+

Y ′′

Y
= 0



Steady-state temperature in semi-infinite plate, continued

• We choose the sign of the constant to give us reasonable
behavior based on the boundary conditions

X ′′ + k2X = 0

Y ′′ − k2Y = 0

• From the first ordinary differential equation, we get
X (x) = sin kx and X (x) = cos kx
• Since T = 0 at x = 0, the cos kx solution does not work
• Boundary condition T = 0 at x = 10 means we have solutions
Xn(x) = sin nπx

10 , with n = 1, 2, 3, ...



Steady-state temperature in semi-infinite plate, continued

• Now the equation for Y (y), taking care that we now have
k2
n = (nπ

10 )2

Y ′′ − k2
nY = 0

• We get solutions Yn(y) = ekny and Yn(y) = e−kny

• Since T = 0 as y →∞, we have Yn(y) = e−kny = e−nπy/10

• We can then write the general solutions that satisfy the
boundary conditions as y →∞, and at x = 0 and x = 10

T (x , y) =
∞∑

n=1

bne
−nπy/10 sin

nπx

10



Steady-state temperature in semi-infinite plate, continued

• To determine bn coefficients, use that T = 100 at y = 0

T (x , y = 0) =
∞∑

n=1

bn sin
nπx

10
= 100

• A Fourier series! We find the bn from

bn =
2

10

∫ 10

0
100 sin

nπx

10
dx = (20)

(
10

nπ

)(
− cos

nπx

10

)
|10
0

• We find bn = 400
nπ for odd n, and bn = 0 for even n

T =
400

π

(
e−πy/10 sin

πx

10
+

1

3
e−3πy/10 sin

3πx

10
+

1

5
e−πy/2 sin

πx

2
+ ...

)



Time-dependent diffusion or heat flow

• If ∇2T 6= 0, then the temperature field becomes time-dependent
• Imagine a strip of metal, extending to ±∞ in the y direction, but
bounded at x = 0 and x = l
• At t = 0, the system is in steady-state with u = 0 at x = 0, and
u = 100 at x = l
• The temperature profile at t = 0 satisfies ∇2u = 0, or d2u

dx2 = 0
• We find initially a temperature profile u = 100 x

l
• Now abruptly set u = 0 at x = 0 and x = l
• The temperature profile is now time-dependent

d2u

dx2
=

1

α2

du

dt



Time-dependent diffusion or heat flow, continued

• We apply separation of variables u(x , t) = T (t)X (x)

X ′′

X
=

1

α2

T ′

T
= −k2

• We find T = e−k2α2t

• From the boundary conditions u = 0 at x = 0 and x = l , we find
X = sin nπx

l with n = 1, 2, 3, ...

u(x , t) =
∞∑

n=1

bn sin
nπx

l
e−( nπx

l
)2t

• We find the bn from the initial condition u(x , t = 0) = 100 x
l



Time-dependent diffusion or heat flow, initial conditions

• We can solve for the initial conditions (t = 0)

u(x , t = 0) =
100

l
x =

∞∑
n=1

bn sin
nπx

l

• Notice compared to before, when we expanded periodic
functions, the y0(x) and v0(x) are not periodic with period l
• However, we can show that the sin nπx

l make a complete,
orthogonal set over the interval 0 < x < l
• We find the bn then, using that∫ l

0
sin

mπx

l
sin

nπx

l
dx =

l

2
δm,n

• We find that bn = 200
π

(−1)n−1

n



Time-dependent diffusion or heat flow, final answer

• Then we can finally write the series solution

u =
200

π

[
e−(πα/l)2t sin

πx

l
− e−(2πα/l)2t sin

2πx

l
+ e−(3πα/l)2t sin

3πx

l
− ...

]
• Notice that as t →∞, we reach equilibrium T = 0 everywhere
• Another example, slightly different... final conditions involve a
temperature gradient


