Expansion of 1/r potential in Legendre polynomials

- ullet In electrostatics and gravitation, we see scalar potentials of the form $V=rac{K}{d}$
- Take $d=|\vec{R}-\vec{r}|=\sqrt{R^2-2Rr\cos\theta+r^2}=R\sqrt{1-2rac{r}{R}\cos\theta+(rac{r}{R})^2}$
- Use $h = \frac{r}{R}$ and $x = \cos \theta$, and then we see we have the generating function!

$$V = \frac{K}{R} (1 - 2hx + h^2)^{-1/2} = \frac{K}{R} \sum_{l=1}^{\infty} h^l P_l(x)$$

 \bullet Then in terms of the r and θ variables, we have

$$V = K \sum_{l=0}^{\infty} \frac{r^l P_l(\cos \theta)}{R^{l+1}}$$

Multipole expansion

• If we have make charges q_i at different coordinates \vec{r}_i , then we can use this to find the electrostatic potential at \vec{R}

$$V = \frac{1}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{\sum_{i} q_i r_i^l P_l(\cos \theta_i)}{R^{l+1}}$$

• Or if we have a continuous distribution $\rho(\vec{r})$,

$$V = \frac{1}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{\int \int \int r^l P_l(\cos\theta) \rho d\tau}{R^{l+1}}$$

ullet Lowest order term I=0, is just the total charge, $V\propto {1\over R}$

$$Q = \int \int \int \rho d\tau$$

Multipole expansion, continued

ullet Next order term I=1 is the dipole moment, $V \propto rac{1}{R^2}$

$$p = \int \int \int r \cos \theta \rho d\tau$$

ullet Writing both the I=0 (monopole) and I=1 (dipole) terms, we have

$$V = \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{R} + \frac{p}{R^2} + \dots \right]$$

- ullet Higher order terms take into account more details of the distribution with contributions that fall off faster with increasing R
- \bullet For example, the quadrupole moments contribute a potential $\propto \frac{1}{R^3}$

Associated Legendre equation

$$(1-x^2)y'' - 2xy' + \left[I(I+1) - \frac{m^2}{1-x^2}\right]y = 0$$

- The Legendre equation corresponds to m=0
- We again have I and m integer, and write the solutions $P_I^m(x)$
- The $P_l^m(x)$ can be found from the $P_l(x)$ using, for positive m

$$P_{l}^{m}(x) = (1 - x^{2})^{m/2} \frac{d^{m}}{dx^{m}} P_{l}(x)$$

- Since the associated Legendre equation is the same for positive and negative m, $P_I^{-m}(x) = P_I^m(x)$
- Using the fact that the highest power of x in $P_I(x)$ is x^I , we have then $-I \le m \le I$, and m and I are both integers

Orthogonality of the associated Legendre functions

• The associated Legendre functions $P_l^m(x)$ are orthogonal on the interval -1 < x < 1 for each value of m

$$\int_{-1}^{1} P_{l}^{m}(x) P_{l'}^{m}(x) dx = \delta_{l,l'} \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!}$$

ullet We can still make an expansion in these polynomials for m
eq 0

$$f(x) = \sum_{l=|m|}^{\infty} c_l P_l^m(x)$$

Connection to Laplacian in spherical coordinates (Chapter 13)

• We might often encounter the Laplace equation and spherical coordinates might be the most convenient

$$\nabla^2 u(r,\theta,\phi) = 0$$

• We already saw in Chapter 10 how to write the Laplacian operator in spherical coordinates,

$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2}$$

- This is a partial differential equation we will solve by what will become a standard approach of *separation of variables*
- We take $u(r,\theta,\phi)=R(r)\Theta(\theta)\Phi(\phi)$, which we substitute in and then multipy by $\frac{r^2}{R\Theta\Phi}$

Separation of variables for the Laplace equation

Because of this separation we now wind up with total derivatives

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{1}{\Theta}\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \frac{1}{\Phi}\frac{1}{\sin^2\theta}\frac{d^2\Phi}{d\phi^2} = 0$$

 \bullet Because the first two terms do not depend on $\phi,$ we must have from the last term

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -m^2$$

• The functions $\Phi(\phi)$ must be periodic with period 2π , and this suggest that m is an integer and $\Phi = \sin m\phi$ or $\Phi = \cos m\phi$

Separation of variables for the Laplace equation, continued

• Now we can replace $\frac{1}{\Phi} \frac{d^2 \Phi}{d \phi^2}$ with the constant $-m^2$

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{1}{\Theta}\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) - \frac{m^2}{\sin^2\theta} = 0$$

ullet The first term is a function of only r, and the last two terms are now functions of only heta, so we can take

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = k$$

- Here k is just a constant that we will later take k = l(l+1)
- ullet Then we have the final equation for the heta-dependent terms,

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(k - \frac{m^2}{\sin^2\theta} \right) \Theta = 0$$

Separation of variables for the Laplace equation, continued

- We solved for Φ , but we still need to solve for R and Θ
- ullet For the moment, let's focus only on the Θ function that solves

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(k - \frac{m^2}{\sin^2\theta} \right) \Theta = 0$$

- Make a change of variables to $x = \cos \theta$ and then $\Theta(\theta) \to y(x)$
- Then we have $\frac{d}{d\theta} = \frac{dx}{d\theta} \frac{d}{dx} = -\sin\theta \frac{d}{dx}$, and $\frac{1}{\sin^2\theta} = \frac{1}{1-x^2}$
- We can then obtain the associated Legendre equation

$$y'' - 2xy' + \left[I(I+1) - \frac{m^2}{1 - x^2}\right]y = 0$$

- So we have found the associated Legendre equation from Laplace equation in spherical coordinates!
- Hence we know $\Theta(\theta) = P_I^m(\cos \theta)$

Laplace equation in spherical coordinates, continued

- We will see later that $R(r) = r^{l}$ or $R(r) = r^{-l-1}$
- Recall, we found $\Phi(\phi) = \cos(m\phi)$ or $\Phi(\phi) = \sin(m\phi)$
- Finally $u(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$
- So our solutions are $u = r^l P_l^m(\cos \theta) \sin m\phi$, $u = r^l P_l^m(\cos \theta) \cos m\phi$, $u = r^{-l-1} P_l^m(\cos \theta) \sin m\phi$, $u = r^{-l-1} P_l^m(\cos \theta) \cos m\phi$
- ullet Superposition applies! So in general, a solution might be a linear combination of these solutions for different I and m
- ullet Will depend on boundary conditions! For example, maybe we are interested in solutions near r=0 where r^{-l-1} diverges, then

$$u(r,\theta,\phi) = \sum_{m=-l}^{l} \sum_{l=0}^{\infty} r^{l} P_{l}^{m}(\cos\theta) \left[a_{lm} \cos m\phi + b_{lm} \sin m\phi \right]$$

Steady-state temperature in a sphere

Heat travels by diffusion, so we have

$$\nabla^2 T = \frac{1}{\alpha^2} \frac{\partial T}{\partial t}$$

- The constant $\frac{1}{\alpha^2}$ depends on the properties of the medium, in one can show that $\frac{1}{\alpha^2} = \frac{C}{\kappa}$, where C is the specific heat capacity and κ is thermal conductivity
- This can be derived from Fourier's Law $\vec{J} = -\kappa \vec{\nabla} T$ (For an isotropic medium, actually the conductivity is a rank 2 tensor!) and the continuity equation $\frac{\partial u}{\partial t} = -\vec{\nabla} \cdot \vec{J} = \kappa \nabla^2 T$ and $\frac{\partial u}{\partial t} = C \frac{\partial T}{\partial t}$
- In steady state $\frac{\partial T}{\partial t} = 0$, so $\vec{\nabla} T = 0$

Steady-state temperature in a sphere

- Consider a sphere of radius r=1, with the temperature T=100 on the top half (z>0 or $0<\theta<\pi/2$) and T=0 on the bottom half (z<0 or $\pi/2<\theta<\pi$)
- ullet We know that our solution is a solution to Laplace equation $abla^2 T = 0$ most conveniently in spherical coordinates

$$T(r,\theta,\phi) = \sum_{m=-l}^{l} \sum_{l=0}^{\infty} r^{l} P_{l}^{m}(\cos\theta) \left[a_{lm} \cos m\phi + b_{lm} \sin m\phi \right]$$

ullet Based on the problem, we see there is no ϕ dependence, so we only require m=0 and $\cos m\phi=1$, so we simplify

$$T(r,\theta) = \sum_{l=0}^{\infty} c_l r^l P_l^{m=0}(\cos \theta)$$