
Vector operators in curvilinear coordinate systems

• In a Cartesian system, take x1 = x , x2 = y , and x3 = z , then an
element of arc length ds2 is,

ds2 = dx2
1 + dx2

2 + dx2
3

• In a general system of coordinates, we still have x1, x2, and x3

• For example, in cylindrical coordinates, we have x1 = r , x2 = θ,
and x3 = z
• We have already shown how we can write ds2 in cylindrical
coordinates,

ds2 = dr2 + r2dθ + dz2 = dx2
1 + x2

1dx2
2 + dx2

3

• We write this in a general form, with hi being the scale factors

ds2 = h2
1dx2

1 + h2
2dx2

2 + h2
3dx2

3

• We see then for cylindrical coordinates, h1 = 1, h2 = r , and
h3 = 1



Curvilinear coordinates

• For an vector displacement ~ds

~ds = ê1h1dx1 + ê2h2dx2 + ê3h3dx3

• Back to our example of cylindrical coordiantes, ê1 = êr , ê2 = êθ,
and ê3 = êz , and

~ds = êrdr + êθrdθ + êzdz

• These are orthogonal systems, but it would not have to be!

ds2 =
3∑

i=1

3∑
j=1

gijdxidxi

• The gij is the metric tensor, and for an orthogonal system it is
diagonal with gi = h2

i



Vector operators in general curvilinear coordinates

• Recall the directional derivative dφ
ds along ~u, where ~u was a unit

vector

dφ

ds
= ∇φ · ~u

• Now the ~u becomes the unit vectors in an orthogonal system, for
example in cylindrical coordinates
• Now we recall that ds2 = ds2 = h2

1dx2
1 + h2

2dx2
2 + h2

3dx2
3

• Let’s take a cylindrical system, first consider ~u = êr , then
ds = dr

~∇φ(r , θ, z) · êr =
∂φ

∂r



Vector operators in general curvilinear coordinates

• Next ~u = êrθ, then ds = rdθ (h2 = r)

~∇φ(r , θ, z) · êθ =
1

r

∂φ

∂θ

• It is also easy to show,

~∇φ(r , θ, z) · êz =
∂φ

∂z

• Now that we have the projections, we can find ~∇φ in cylindrical
coordinates,

~∇φ =
∂φ

∂r
êr +

1

r

∂φ

∂θ
êθ +

∂φ

∂z
êz



Gradient in curvilinear (orthogonal) coordinate system

• Most generally, we have

~∇φ =
3∑

i=1

êi
1

hi

∂φ

∂xi

• In Cartesian, obviously h1 = h2 = h3, and x1 = x , x2 = y , and
x3 = z ,

~∇φ =
∂φ

∂x
î +

∂φ

∂y
ĵ +

∂φ

∂z
k̂

• In a spherical coordinate system x1 = r , x2 = θ, and x3 = φ,
then h1 = 1, h2 = r , and h3 = r sin θ

~∇u =
∂u

∂r
êr +

1

r

∂u

∂θ
êθ +

1

r sin θ

∂u

∂φ
êφ



Divergence in curvilinear coordinates

• We recall in Cartesian coordinates, with ~V = Vx î + Vy ĵ + Vz k̂ ,

and the gradient operator ~∇ = ∂
∂x î + ∂

∂y ĵ + ∂
∂z k̂

~∇ · ~V =
∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z

• In a general orthogonal system, ~V = V1ê1 + V2ê2 + V3ê3

• The difficultly comes because the unit vectors in a general
orthogonal coordinate system may not be fixed



Divergence in curvilinear coordinates, continued

• First show that ~∇ ·
(

ê3
h1h2

)
= 0 (Problem 1)

• Assume ê1 × ê2 = ê3 (orthogonal coordinate system), and then
obviously ∇x1 = ê1

h1
and ∇x2 = ê2

h2
, and ~∇x1 × ~∇x2 = ê3

h1h2
, and

next

~∇ ·
(

ê3

h1h2

)
= ~∇ ·

(
~∇x1 × ~∇x2

)
• The vector relations at the end of Chapter 6 help to work out the
right-hand side,

~∇ ·
(
~∇x1 × ~∇x2

)
= ~∇x2 ·

(
~∇× ~∇x1

)
− ~∇x1 ·

(
~∇× ~∇x2

)
• But we have ~∇× ~∇x1 = ~∇× ~∇x2 = 0, so we have shown
~∇ ·
(

ê3
h1h2

)
= 0



Divergence in curvilinear coordinates, continued

• We use then that ~∇ ·
(

ê3
h1h2

)
= 0, and also ~∇ ·

(
ê1

h2h3

)
= 0 and

~∇ ·
(

ê2
h1h3

)
= 0

~∇ · ~V = ~∇ ·
(

ê1

h2h3
h2h3V1 +

ê2

h1h3
h1h3V2 +

ê3

h1h2
h1h2V3

)
• We use then ~∇ · (φ~V ) = ~V · ~∇φ+ φ~∇ · ~V

~∇ · ~V =
ê1

h2h3
· ~∇(h2h3V1) +

ê2

h1h3
· ~∇(h1h3V2) +

ê3

h1h2
· ~∇(h1h2V3)

• Then we see that ê1 · ~∇(h2h3V1) = 1
h1

∂
∂x1

(h2h3V1) ,etc.



Divergence in curvilinear coordinates, final result!

• Finally we get,

~∇ · ~V =
1

h1h2h3

[
∂

∂x1
(h2h3V1) +

∂

∂x2
(h1h3V2) +

∂

∂x3
(h1h2V3)

]
• Example: Cylindrical coordinates, x1 = r , x2 = θ, and x3 = z ,
with h1 = 1, h2 = r , and h3 = 1
• In cylindrical coordinates, ~V = Vr êr + Vθ êθ + Vz êz

~∇ · ~V =
1

r

[
∂

∂r
(rVr ) +

∂

∂θ
(Vθ) +

∂

∂z
(rVz)

]
• Finally we simplify,

~∇ · ~V =
1

r

∂

∂r
(rVr ) +

1

r

∂Vθ
∂θ

+
∂Vz

∂z



Another important example: Divergence in spherical
coordinates

• In spherical coordinates ~V = Vr êr + +Vθ êθ + Vφêφ
• Here we have x1 = r , x2 = θ, and x3 = φ
• The scale factors are h1 = 1, h2 = r , and h3 = r sin θ

~∇ · ~V =
1

r2 sin θ

[
∂

∂r

(
r2 sin θVr

)
+

∂

∂θ
(r sin θVθ) +

∂

∂φ
(rVφ) +

]
• This simplifies to

~∇ · ~V =
1

r2

∂

∂r

(
r2Vr

)
+

1

r

∂Vθ
∂θ

+
1

r sin θ

∂Vφ
∂φ



Laplacian

• We want to have an expression for ∇2u for a general curvilinear
system
• We start with ~∇u = ê1

h1

∂u
∂x1

+ ê2
h2

∂u
∂x2

+ ê3
h3

∂u
∂x3

• Then with ~V = V1ê1 + V2ê2 + V3ê3, we have V1 = 1
h1

∂u
∂x1

and

V2 = 1
h2

∂u
∂x2

and V3 = 1
h3

∂u
∂x3

• Now we go back to our formula for the divergence,

~∇ · ~V =
1

h1h2h3

[
∂

∂x1
(h2h3V1) +

∂

∂x2
(h1h3V2) +

∂

∂x3
(h1h2V3)

]
• The ∇2u = ~∇ · ~∇u is

∇2u =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂u

∂x1

)
+

∂

∂x2

(
h1h3

h2

∂u

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂u

∂x3

)]



Example: ∇2u in cylindrical coordinates

∇2u =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂u

∂x1

)
+

∂

∂x2

(
h1h3

h2

∂u

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂u

∂x3

)]
• In cylindrical coordinates we have x1 = r , x2 = θ, and x3 = z ,
with h1 = 1, h2 = r , and h3 = 1

∇2u =
1

r

[
∂

∂r

(
r
∂u

∂r

)
+

∂

∂θ

(
1

r

∂u

∂θ

)
+

∂

∂z

(
r
∂u

∂z

)]
• This simplifies to

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2



Example: ∇2u in spherical coordinates

∇2u =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂u

∂x1

)
+

∂

∂x2

(
h1h3

h2

∂u

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂u

∂x3

)]
• In spherical coordinates we have x1 = r , x2 = θ, and x3 = φ,
with h1 = 1, h2 = r , and h3 = r sin θ

∇2u =
1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂u

∂r

)
+

∂

∂θ

(
sin θ

∂u

∂θ

)
+

∂

∂φ

(
1

sin θ

∂u

∂φ

)]
• This simplifies to

∇2u =
1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2



Curl in curvilinear coordinates

• As before we work with some general system and vector
~V = V1ê1 + V2ê2 + V3ê3

• Derivation following problem 2, start with ~∇x1 = ê1
h1

, and then
~∇× ~∇x1 = 0
• Hence we see ~∇× ê1

h1
= ~∇× ê2

h2
= ~∇× ê3

h3
= 0

• Write ~V = ê1
h1

(h1V1) + ê2
h2

(h2V2) + ê3
h3

(h3V3)

• Now we use the relation ~∇× (φ~U) = φ(~∇× ~U)− ~U × (~∇φ)

~∇× ~V = − ê1

h1
× ~∇(h1V1)− ê2

h2
× ~∇(h2V2)− ê3

h3
× ~∇(h3V3)

• Consider just the first term, to keep it simple,

− ê1

h1
×~∇(h1V1) = − ê1

h1
×
[

ê1

h1

∂(h1V1)

∂x1
+

ê2

h2

∂(h1V1)

∂x2
+

ê3

h3

∂(h1V1)

∂x3

]



Curl in curvilinear coordinates, continued

• Next we just use ê1 × ê1 = 0, ê1 × ê2 = ê3, and ê1 × ê3 = −ê2

− ê1

h1
× ~∇(h1V1) = − 1

h1h2h3

[
h3ê3

∂(h1V1)

∂x2
− h2ê2

∂(h1V1)

∂x3

]
• We can do the other terms as well, and the final result is
expressed as a determinant

~∇× ~V =
1

h1h2h3

∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3
∂
∂x1

∂
∂x2

∂
∂x3

h1V1 h2V2 h3V3

∣∣∣∣∣∣



Example: Curl in cylindrical coordiates

~∇× ~V =
1

h1h2h3

∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3
∂
∂x1

∂
∂x2

∂
∂x3

h1V1 h2V2 h3V3

∣∣∣∣∣∣
• In cylindrical coordinates we have x1 = r , x2 = θ, and x3 = z ,
with h1 = 1, h2 = r , and h3 = 1

~∇× ~V =
1

r

∣∣∣∣∣∣
êr r êθ êz
∂
∂r

∂
∂θ

∂
∂z

Vr rVθ Vz

∣∣∣∣∣∣
• We can evaluate the determinant

~∇×~V =

(
1

r

∂Vz

∂θ
− ∂Vθ

∂z

)
êr +

(
∂Vr

∂z
− ∂Vz

∂r

)
êθ+

1

r

(
∂

∂r
(rVθ)− ∂Vr

∂θ

)
êz



Example: Curl in spherical coordinate

~∇× ~V =
1

h1h2h3

∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3
∂
∂x1

∂
∂x2

∂
∂x3

h1V1 h2V2 h3V3

∣∣∣∣∣∣
• In spherical coordinates we have x1 = r , x2 = φ, and x3 = θ,
with h1 = 1, h2 = r sin θ, and h3 = r

~∇× ~V =
1

r2 sin θ

∣∣∣∣∣∣
êr r êθ r sin θêφ
∂
∂r

∂
∂θ

∂
∂φ

Vr rVθ r sin θVφ

∣∣∣∣∣∣
• We can evaluate the determinant to get ~∇× ~V


