## Vector operators in curvilinear coordinate systems

- In a Cartesian system, take $x_{1}=x, x_{2}=y$, and $x_{3}=z$, then an element of arc length $d s^{2}$ is,

$$
d s^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

- In a general system of coordinates, we still have $x_{1}, x_{2}$, and $x_{3}$
- For example, in cylindrical coordinates, we have $x_{1}=r, x_{2}=\theta$, and $x_{3}=z$
- We have already shown how we can write $d s^{2}$ in cylindrical coordinates,

$$
d s^{2}=d r^{2}+r^{2} d \theta+d z^{2}=d x_{1}^{2}+x_{1}^{2} d x_{2}^{2}+d x_{3}^{2}
$$

- We write this in a general form, with $h_{i}$ being the scale factors

$$
d s^{2}=h_{1}^{2} d x_{1}^{2}+h_{2}^{2} d x_{2}^{2}+h_{3}^{2} d x_{3}^{2}
$$

- We see then for cylindrical coordinates, $h_{1}=1, h_{2}=r$, and $h_{3}=1$


## Curvilinear coordinates

- For an vector displacement $\overrightarrow{d s}$

$$
\overrightarrow{d s}=\hat{e}_{1} h_{1} d x_{1}+\hat{e}_{2} h_{2} d x_{2}+\hat{e}_{3} h_{3} d x_{3}
$$

- Back to our example of cylindrical coordiantes, $\hat{e}_{1}=\hat{e}_{r}, \hat{e}_{2}=\hat{e}_{\theta}$, and $\hat{e}_{3}=\hat{e}_{z}$, and

$$
\overrightarrow{d s}=\hat{e}_{r} d r+\hat{e}_{\theta} r d \theta+\hat{e}_{z} d z
$$

- These are orthogonal systems, but it would not have to be!

$$
d s^{2}=\sum_{i=1}^{3} \sum_{j=1}^{3} g_{i j} d x_{i} d x_{i}
$$

- The $g_{i j}$ is the metric tensor, and for an orthogonal system it is diagonal with $g_{i}=h_{i}^{2}$


## Vector operators in general curvilinear coordinates

- Recall the directional derivative $\frac{d \phi}{d s}$ along $\vec{u}$, where $\vec{u}$ was a unit vector

$$
\frac{d \phi}{d s}=\nabla \phi \cdot \vec{u}
$$

- Now the $\vec{u}$ becomes the unit vectors in an orthogonal system, for example in cylindrical coordinates
- Now we recall that $d s^{2}=d s^{2}=h_{1}^{2} d x_{1}^{2}+h_{2}^{2} d x_{2}^{2}+h_{3}^{2} d x_{3}^{2}$
- Let's take a cylindrical system, first consider $\vec{u}=\hat{e}_{r}$, then $d s=d r$

$$
\vec{\nabla} \phi(r, \theta, z) \cdot \hat{e}_{r}=\frac{\partial \phi}{\partial r}
$$

## Vector operators in general curvilinear coordinates

- Next $\vec{u}=\hat{e}_{r \theta}$, then $d s=r d \theta\left(h_{2}=r\right)$

$$
\vec{\nabla} \phi(r, \theta, z) \cdot \hat{e}_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}
$$

- It is also easy to show,

$$
\vec{\nabla} \phi(r, \theta, z) \cdot \hat{e}_{z}=\frac{\partial \phi}{\partial z}
$$

- Now that we have the projections, we can find $\vec{\nabla} \phi$ in cylindrical coordinates,

$$
\vec{\nabla} \phi=\frac{\partial \phi}{\partial r} \hat{e}_{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{e}_{\theta}+\frac{\partial \phi}{\partial z} \hat{e}_{z}
$$

## Gradient in curvilinear (orthogonal) coordinate system

- Most generally, we have

$$
\vec{\nabla} \phi=\sum_{i=1}^{3} \hat{e}_{i} \frac{1}{h_{i}} \frac{\partial \phi}{\partial x_{i}}
$$

- In Cartesian, obviously $h_{1}=h_{2}=h_{3}$, and $x_{1}=x, x_{2}=y$, and $x_{3}=z$,

$$
\vec{\nabla} \phi=\frac{\partial \phi}{\partial x} \hat{i}+\frac{\partial \phi}{\partial y} \hat{j}+\frac{\partial \phi}{\partial z} \hat{k}
$$

- In a spherical coordinate system $x_{1}=r, x_{2}=\theta$, and $x_{3}=\phi$, then $h_{1}=1, h_{2}=r$, and $h_{3}=r \sin \theta$

$$
\vec{\nabla} u=\frac{\partial u}{\partial r} \hat{e}_{r}+\frac{1}{r} \frac{\partial u}{\partial \theta} \hat{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial u}{\partial \phi} \hat{e}_{\phi}
$$

## Divergence in curvilinear coordinates

- We recall in Cartesian coordinates, with $\vec{V}=V_{x} \hat{i}+V_{y} \hat{j}+V_{z} \hat{k}$, and the gradient operator $\vec{\nabla}=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}$

$$
\vec{\nabla} \cdot \vec{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}
$$

- In a general orthogonal system, $\vec{V}=V_{1} \hat{e}_{1}+V_{2} \hat{e}_{2}+V_{3} \hat{e}_{3}$
- The difficultly comes because the unit vectors in a general orthogonal coordinate system may not be fixed


## Divergence in curvilinear coordinates, continued

- First show that $\vec{\nabla} \cdot\left(\frac{\hat{e}_{3}}{h_{1} h_{2}}\right)=0$ (Problem 1)
- Assume $\hat{e}_{1} \times \hat{e}_{2}=\hat{e}_{3}$ (orthogonal coordinate system), and then obviously $\nabla x_{1}=\frac{\hat{e}_{1}}{h_{1}}$ and $\nabla x_{2}=\frac{\hat{\epsilon}_{2}}{h_{2}}$, and $\vec{\nabla} x_{1} \times \vec{\nabla} x_{2}=\frac{\hat{e}_{3}}{h_{1} h_{2}}$, and next

$$
\vec{\nabla} \cdot\left(\frac{\hat{e}_{3}}{h_{1} h_{2}}\right)=\vec{\nabla} \cdot\left(\vec{\nabla} x_{1} \times \vec{\nabla} x_{2}\right)
$$

- The vector relations at the end of Chapter 6 help to work out the right-hand side,

$$
\vec{\nabla} \cdot\left(\vec{\nabla} x_{1} \times \vec{\nabla} x_{2}\right)=\vec{\nabla} x_{2} \cdot\left(\vec{\nabla} \times \vec{\nabla} x_{1}\right)-\vec{\nabla} x_{1} \cdot\left(\vec{\nabla} \times \vec{\nabla} x_{2}\right)
$$

- But we have $\vec{\nabla} \times \vec{\nabla} x_{1}=\vec{\nabla} \times \vec{\nabla} x_{2}=0$, so we have shown $\vec{\nabla} \cdot\left(\frac{\hat{e}_{3}}{h_{1} h_{2}}\right)=0$


## Divergence in curvilinear coordinates, continued

- We use then that $\vec{\nabla} \cdot\left(\frac{\hat{e}_{3}}{h_{1} h_{2}}\right)=0$, and also $\vec{\nabla} \cdot\left(\frac{\hat{e}_{1}}{h_{2} h_{3}}\right)=0$ and $\vec{\nabla} \cdot\left(\frac{\hat{e}_{2}}{h_{1} h_{3}}\right)=0$

$$
\vec{\nabla} \cdot \vec{V}=\vec{\nabla} \cdot\left(\frac{\hat{e}_{1}}{h_{2} h_{3}} h_{2} h_{3} V_{1}+\frac{\hat{e}_{2}}{h_{1} h_{3}} h_{1} h_{3} V_{2}+\frac{\hat{e}_{3}}{h_{1} h_{2}} h_{1} h_{2} V_{3}\right)
$$

- We use then $\vec{\nabla} \cdot(\phi \vec{V})=\vec{V} \cdot \vec{\nabla} \phi+\phi \vec{\nabla} \cdot \vec{V}$
$\vec{\nabla} \cdot \vec{V}=\frac{\hat{e}_{1}}{h_{2} h_{3}} \cdot \vec{\nabla}\left(h_{2} h_{3} V_{1}\right)+\frac{\hat{e}_{2}}{h_{1} h_{3}} \cdot \vec{\nabla}\left(h_{1} h_{3} V_{2}\right)+\frac{\hat{e}_{3}}{h_{1} h_{2}} \cdot \vec{\nabla}\left(h_{1} h_{2} V_{3}\right)$
- Then we see that $\hat{e}_{1} \cdot \vec{\nabla}\left(h_{2} h_{3} V_{1}\right)=\frac{1}{h_{1}} \frac{\partial}{\partial x_{1}}\left(h_{2} h_{3} V_{1}\right)$,etc.


## Divergence in curvilinear coordinates, final result!

- Finally we get,

$$
\vec{\nabla} \cdot \vec{V}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial x_{1}}\left(h_{2} h_{3} V_{1}\right)+\frac{\partial}{\partial x_{2}}\left(h_{1} h_{3} V_{2}\right)+\frac{\partial}{\partial x_{3}}\left(h_{1} h_{2} V_{3}\right)\right]
$$

- Example: Cylindrical coordinates, $x_{1}=r, x_{2}=\theta$, and $x_{3}=z$, with $h_{1}=1, h_{2}=r$, and $h_{3}=1$
- In cylindrical coordinates, $\vec{V}=V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}+V_{z} \hat{e}_{z}$

$$
\vec{\nabla} \cdot \vec{V}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{\partial}{\partial \theta}\left(V_{\theta}\right)+\frac{\partial}{\partial z}\left(r V_{z}\right)\right]
$$

- Finally we simplify,

$$
\vec{\nabla} \cdot \vec{V}=\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}+\frac{\partial V_{z}}{\partial z}
$$

## Another important example: Divergence in spherical coordinates

- In spherical coordinates $\vec{V}=V_{r} \hat{e}_{r}++V_{\theta} \hat{e}_{\theta}+V_{\phi} \hat{e}_{\phi}$
- Here we have $x_{1}=r, x_{2}=\theta$, and $x_{3}=\phi$
- The scale factors are $h_{1}=1, h_{2}=r$, and $h_{3}=r \sin \theta$

$$
\vec{\nabla} \cdot \vec{V}=\frac{1}{r^{2} \sin \theta}\left[\frac{\partial}{\partial r}\left(r^{2} \sin \theta V_{r}\right)+\frac{\partial}{\partial \theta}\left(r \sin \theta V_{\theta}\right)+\frac{\partial}{\partial \phi}\left(r V_{\phi}\right)+\right]
$$

- This simplifies to

$$
\vec{\nabla} \cdot \vec{V}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} V_{r}\right)+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial V_{\phi}}{\partial \phi}
$$

## Laplacian

- We want to have an expression for $\nabla^{2} u$ for a general curvilinear system
- We start with $\vec{\nabla} u=\frac{\hat{e}_{1}}{h_{1}} \frac{\partial u}{\partial x_{1}}+\frac{\hat{e}_{2}}{h_{2}} \frac{\partial u}{\partial x_{2}}+\frac{\hat{e}_{3}}{h_{3}} \frac{\partial u}{\partial x_{3}}$
- Then with $\vec{V}=V_{1} \hat{e}_{1}+V_{2} \hat{e}_{2}+V_{3} \hat{e}_{3}$, we have $V_{1}=\frac{1}{h_{1}} \frac{\partial u}{\partial x_{1}}$ and $V_{2}=\frac{1}{h_{2}} \frac{\partial u}{\partial x_{2}}$ and $V_{3}=\frac{1}{h_{3}} \frac{\partial u}{\partial x_{3}}$
- Now we go back to our formula for the divergence,

$$
\vec{\nabla} \cdot \vec{V}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial x_{1}}\left(h_{2} h_{3} V_{1}\right)+\frac{\partial}{\partial x_{2}}\left(h_{1} h_{3} V_{2}\right)+\frac{\partial}{\partial x_{3}}\left(h_{1} h_{2} V_{3}\right)\right]
$$

- The $\nabla^{2} u=\vec{\nabla} \cdot \vec{\nabla} u$ is

$$
\nabla^{2} u=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial x_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial u}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial u}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial u}{\partial x_{3}}\right)\right.
$$

## Example: $\nabla^{2} u$ in cylindrical coordinates

$$
\nabla^{2} u=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial x_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial u}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial u}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial u}{\partial x_{3}}\right)\right.
$$

- In cylindrical coordinates we have $x_{1}=r, x_{2}=\theta$, and $x_{3}=z$, with $h_{1}=1, h_{2}=r$, and $h_{3}=1$

$$
\nabla^{2} u=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\frac{1}{r} \frac{\partial u}{\partial \theta}\right)+\frac{\partial}{\partial z}\left(r \frac{\partial u}{\partial z}\right)\right]
$$

- This simplifies to

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

## Example: $\nabla^{2} u$ in spherical coordinates

$$
\nabla^{2} u=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial x_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial u}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial u}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial u}{\partial x_{3}}\right)\right.
$$

- In spherical coordinates we have $x_{1}=r, x_{2}=\theta$, and $x_{3}=\phi$, with $h_{1}=1, h_{2}=r$, and $h_{3}=r \sin \theta$

$$
\nabla^{2} u=\frac{1}{r^{2} \sin \theta}\left[\frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{\partial}{\partial \phi}\left(\frac{1}{\sin \theta} \frac{\partial u}{\partial \phi}\right)\right]
$$

- This simplifies to

$$
\nabla^{2} u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}
$$

## Curl in curvilinear coordinates

- As before we work with some general system and vector $\vec{V}=V_{1} \hat{e}_{1}+V_{2} \hat{e}_{2}+V_{3} \hat{e}_{3}$
- Derivation following problem 2, start with $\vec{\nabla} x_{1}=\frac{\hat{e}_{1}}{h_{1}}$, and then $\vec{\nabla} \times \vec{\nabla} x_{1}=0$
- Hence we see $\vec{\nabla} \times \frac{\hat{e}_{1}}{h_{1}}=\vec{\nabla} \times \frac{\hat{e}_{2}}{h_{2}}=\vec{\nabla} \times \frac{\hat{e}_{3}}{h_{3}}=0$
- Write $\vec{V}=\frac{\hat{e}_{1}}{h_{1}}\left(h_{1} V_{1}\right)+\frac{\hat{e}_{2}}{h_{2}}\left(h_{2} V_{2}\right)+\frac{\hat{e}_{3}}{h_{3}}\left(h_{3} V_{3}\right)$
- Now we use the relation $\vec{\nabla} \times(\phi \vec{U})=\phi(\vec{\nabla} \times \vec{U})-\vec{U} \times(\vec{\nabla} \phi)$

$$
\vec{\nabla} \times \vec{V}=-\frac{\hat{e}_{1}}{h_{1}} \times \vec{\nabla}\left(h_{1} V_{1}\right)-\frac{\hat{e}_{2}}{h_{2}} \times \vec{\nabla}\left(h_{2} V_{2}\right)-\frac{\hat{e}_{3}}{h_{3}} \times \vec{\nabla}\left(h_{3} V_{3}\right)
$$

- Consider just the first term, to keep it simple,

$$
-\frac{\hat{e}_{1}}{h_{1}} \times \vec{\nabla}\left(h_{1} V_{1}\right)=-\frac{\hat{e}_{1}}{h_{1}} \times\left[\frac{\hat{e}_{1}}{h_{1}} \frac{\partial\left(h_{1} V_{1}\right)}{\partial x_{1}}+\frac{\hat{e}_{2}}{h_{2}} \frac{\partial\left(h_{1} V_{1}\right)}{\partial x_{2}}+\frac{\hat{e}_{3}}{h_{3}} \frac{\partial\left(h_{1} V_{1}\right)}{\partial x_{3}}\right]
$$

## Curl in curvilinear coordinates, continued

- Next we just use $\hat{e}_{1} \times \hat{e}_{1}=0, \hat{e}_{1} \times \hat{e}_{2}=\hat{e}_{3}$, and $\hat{e}_{1} \times \hat{e}_{3}=-\hat{e}_{2}$

$$
-\frac{\hat{e}_{1}}{h_{1}} \times \vec{\nabla}\left(h_{1} V_{1}\right)=-\frac{1}{h_{1} h_{2} h_{3}}\left[h_{3} \hat{e}_{3} \frac{\partial\left(h_{1} V_{1}\right)}{\partial x_{2}}-h_{2} \hat{e}_{2} \frac{\partial\left(h_{1} V_{1}\right)}{\partial x_{3}}\right]
$$

- We can do the other terms as well, and the final result is expressed as a determinant

$$
\vec{\nabla} \times \vec{V}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
h_{1} V_{1} & h_{2} V_{2} & h_{3} V_{3}
\end{array}\right|
$$

## Example: Curl in cylindrical coordiates

$$
\vec{\nabla} \times \vec{V}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
h_{1} V_{1} & h_{2} V_{2} & h_{3} V_{3}
\end{array}\right|
$$

- In cylindrical coordinates we have $x_{1}=r, x_{2}=\theta$, and $x_{3}=z$, with $h_{1}=1, h_{2}=r$, and $h_{3}=1$

$$
\vec{\nabla} \times \vec{V}=\frac{1}{r}\left|\begin{array}{ccc}
\hat{e}_{r} & r \hat{e}_{\theta} & \hat{e}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
V_{r} & r V_{\theta} & V_{z}
\end{array}\right|
$$

- We can evaluate the determinant

$$
\vec{\nabla} \times \vec{V}=\left(\frac{1}{r} \frac{\partial V_{z}}{\partial \theta}-\frac{\partial V_{\theta}}{\partial z}\right) \hat{e}_{r}+\left(\frac{\partial V_{r}}{\partial z}-\frac{\partial V_{z}}{\partial r}\right) \hat{e}_{\theta}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r V_{\theta}\right)-\frac{\partial V_{r}}{\partial \theta}\right) \hat{e}
$$

## Example: Curl in spherical coordinate

$$
\vec{\nabla} \times \vec{V}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
h_{1} V_{1} & h_{2} V_{2} & h_{3} V_{3}
\end{array}\right|
$$

- In spherical coordinates we have $x_{1}=r, x_{2}=\phi$, and $x_{3}=\theta$, with $h_{1}=1, h_{2}=r \sin \theta$, and $h_{3}=r$

$$
\vec{\nabla} \times \vec{V}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\hat{e}_{r} & r \hat{e}_{\theta} & r \sin \theta \hat{e}_{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
V_{r} & r V_{\theta} & r \sin \theta V_{\phi}
\end{array}\right|
$$

- We can evaluate the determinant to get $\vec{\nabla} \times \vec{V}$

