Vector operators in curvilinear coordinate systems

e In a Cartesian system, take x; = x, xo = y, and x3 = z, then an
element of arc length ds? is,

ds? = dx? + dx3 + dx32
e In a general system of coordinates, we still have x1, x2, and x3
e For example, in cylindrical coordinates, we have x; = r, xo = 0,
and x3 =z
e We have already shown how we can write ds? in cylindrical
coordinates,

ds? = dr? + r’df + dz? = dx? + xZdx3 + dx3

e We write this in a general form, with h; being the scale factors

ds® = h2dx? + h3dx3 4 h3dx3
e We see then for cylindrical coordinates, hy = 1, hp = r, and
h3 =1
D



Curvilinear coordinates

e For an vector displacement ds

d_:s = &1 hidxy + & hodxo + é3h3dxs
e Back to our example of cylindrical coordiantes, & = &, & = &,
and & = &,, and
ds = &.dr + &rdf + &,dz

e These are orthogonal systems, but it would not have to be!

3 3
ds? = Z ZgijdX;dXi

i=1 j=1

e The gj; is the metric tensor, and for an orthogonal system it is
diagonal with g; = h,?



Vector operators in general curvilinear coordinates

e Recall the directional derivative % along d, where i was a unit
vector
do

£:v¢u

e Now the i/ becomes the unit vectors in an orthogonal system, for
example in cylindrical coordinates

e Now we recall that ds? = ds® = h?dx? + h3dx3 + h3dx3

e Let's take a cylindrical system, first consider 4 = &, then

ds = dr
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Vector operators in general curvilinear coordinates

e Next i = &, then ds = rdf (hy =r)

- . 109
Vo(r,0,z) - & 790
e |t is also easy to show,
- .09
Vo(r,0,z) & = 5z

e Now that we have the projections, we can find ﬁqﬁ in cylindrical
coordinates,
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Gradient in curvilinear (orthogonal) coordinate system

e Most generally, we have

3
o 100
VO= 2 8 o
i=1
e In Cartesian, obviously hy = hy = h3, and x; = x, x» = y, and
X3 =2z,
0~ Opn 0O¢
Vo =— — —k
¢ ox. + ayj + 0z

e In a spherical coordinate system x; = r, xo = 0, and x3 = ¢,
then hy =1, ho = r, and h3 = rsinf
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Divergence in curvilinear coordinates

e We recall in Cartesian coordinates, with V= VX7+ Vy]+ VZIA(,
and the gradient operator V= a%? + %]' + %IA(

=

- OV, AV, V,
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Ox Oy 0z

e In a general orthogonal system, V= Vié + Vo + V383
e The difficultly comes because the unit vectors in a general
orthogonal coordinate system may not be fixed



Divergence in curvilinear coordinates, continued

e First show that V - <i> =0 (Problem 1)

e Assume & x e2 = & (orthogonal coordinate system), and then
obviously Vx; = and Vxo = ez, and Vxl X sz = ihs h , and

next
= é3
V- <h1h2> V <VX1 X VX2>

e The vector relations at the end of Chapter 6 help to work out the
right-hand side,

6 . <6X1 X 6X2> = 6X2 . <6 X 6X1> — ﬁxl . (6 X 6X2>
e But we have V x 6x1 =V x §x2 =0, so we have shown

V- h1h2 =0



Divergence in curvilinear coordinates, continued

e We use then that V - <hf§7

ﬁ-(ﬁ):o

2) =0, and also V - <hf},3) =0 and

V=9 (B Vi 2 Ve s B iV
\Y V<h2h231+hh132+hh123>

e We use then 6-(¢\7):\7-6¢+¢§-\7

~

VoV = L (k) + 2 (hihsVa) + —2 Y (o V3)
2hs3 hihs3 hihy
e Then we see that &; - V(h2h3 Vi) = (h2h3 V1) Letc.



Divergence in curvilinear coordinates, final result!

e Finally we get,

S o 1 o P 5
VoV oty [al(h2h3‘/1)+ (hihsVa) + X(h1h2v3)]

e Example: Cylindrical coordinates, x; = r, xo = 0, and x3 = z,
with hy =1, ho =r,and h3 =1
e In cylindrical coordinates, V = V,&, + V& + V.&,

- - 1[0 0 0
V-Vr[ar(rV)—i-a@(Vg)—i-az(er)}

e Finally we simplify,
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Another important example: Divergence in spherical

coordinates

e In spherical coordinates V= Vi & + +Vpéy + Vyey
e Here we have x; = r, xp =0, and x3 = ¢
e The scale factors are hy =1, h, = r, and h3 = rsinf

1 0
r2sinf | or

V-V= 0 (rVy) +

0
(rsinf@Vy) + 9

(r sm9V) 20

e This simplifies to
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e We want to have an expression for V2u for a general curvilinear
system

. = & Ou & Ou & Jdu
o We start with Vu = g T hoe T hox

° Then W|th V= Viér + Voér + V383, we have V] = axl and
_ 19

Vo = hz BX2 and V3 = = 8—;’3

e Now we go back to our formula for the divergence,

=

- 0
VoV= (h2hsVa) + o - (hihsVa) +
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0
hyhyhs | Ox (h1h2V3)]

Ox3

e The V2u=V - -Vuis

V2, 1 i hohs Ou + 9 0 ([ hihs Ou + 9 0 ([ hihy Ou
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Example: V2u in cylindrical coordinates

v2 1 5] h2h3 ou + 0 h1h3 ou + 0 h1h2 ou

u = —_— —_— —_— —_— —_— —_—
h1 h2 h3 8X1 h1 8X1 8X2 h2 8X2 8X3 h3 8X3

e In cylindrical coordinates we have x; = r, xp = 6, and x3 = z,

with hy =1, h, =r,and h3 =1

r|or or 09 \ r 00 0z \ 0z

e This simplifies to

V2u=>2(rZ )+ 552+
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Example: V2u in spherical coordinates

V2, 1 i hohz Ou L9 0 ([ hihs Ou L9 0 ([ hihy du
" hihohs | Oxg h1 8X1 Ox2 h2 8X2 0x3 h3 8X3

e In spherical coordinates we have x; = r, xo = 6, and x3 = ¢,

with h1 =1, hp = r, and h3 = rsin0

Vzu—; 0 rsm@a— +2 smea— +E L@
" r2sind | or or L 06 0¢ \sinf 0¢

e This simplifies to

V%—lg 20u +71 9 sm63u ! @
2 0r or r2sin 6 00 00 r2 r2sin2 0 0¢?



Curl in curvilinear coordinates

:As before we work with some general system and vector

V = Vié + Vody + V383 . X

e Derivation following problem 2, start with Vx; = % and then
V x VXl =0 . . . A . .
oHenceweseer,%—Vx 22 =V x 23 =0

e Write V = %11 (hl Vl) (h2 V2) + hj (h3 V3)

e Now we use the relation V x (pU) = ¢(V x U) — U x (Vo)

A

6>< V:—%Xﬁ(hlvl)—

X 6(/‘12 V2) — ﬁ X 6(;73\/3)
1

hs

SN

e Consider just the first term, to keep it simple,

él 61 8(/11 Vl) i éa(hl Vl) %8(/‘)1 Vl)
h h1 8X1 h2 8x2 h3 8X3

—EX6(/‘11 Vl) =
h



Curl in curvilinear coordinates, continued

o Next we just use & x 6 =0, & X & = &3, and é; X & = —&
& = 1 . 0(h V1) . 0(h V1)
- V)= ——— — = ey ——r
> V(W) hihahs [ B =

e We can do the other terms as well, and the final result is
expressed as a determinant

1 hiér  hé h3és
7w ) — R 9 0
VxV= h 1 h2 h3 Ox1 Oxo Ox3
hiVy hVo h3Vj




Example: Curl in cylindrical coordiates

1 hér hé  hies
= \/ o) o) 0
V X V = hl h2h3 TX]_ TXQ TXZ&
mVi hVo h3V3

e In cylindrical coordinates we have x; = r, xo = 6, and x3 = z,
with hy =1, ho =r, and h3 =1

1 & ré &
VxV=-|2 2 9
VxV=-l5 % o

Vi, rVyp V,

e We can evaluate the determinant

L (10V. OVe\, (OV, OV.\, 1[0 AW
vV = <r 90 az> e’*(az - ar>69+r <(rV9) >e




Example: Curl in spherical coordinate

1 hiér hyé  h3és
7w ) — R 9 0
VxV= hl h2 h3 Ox1 Oxo Ox3
hiVi hVo h3V3
e In spherical coordinates we have x; = r, xo = ¢, and x3 = 0,
with hy =1, hp = rsinf, and h3 = r

1 & ré rsinfdé,
T v\ — 9 9 0
VX V= r2sing | or 99 9¢
Vi, rVy rsinfVy

e We can evaluate the determinant to get vV x V



