
Major Project: Ising Model

PHZ 5156

This problem combines what we have learned about the technique of Monte-Carlo
simulation with the physics of magnetic phase transitions. In a magnetic material
(e.g. Ni, Fe, etc.) at high temperatures, each atom has a large local magnetic
moment, but they tend to be unaligned. By contrast, at low temperatures, exchange
interactions tend to align the spins and create a macroscopic magnetic moment.
We will make a simple model of the interactions and then use statistical physics to
describe the phase transition from the paramagnetic to ferromagnetic state.

The Hamiltonian HΩ for a two-dimensional spin system is given by

HΩ = −1

2
J

N∑
i=1

N∑
j=1

Sij (Si+1,j + Si−1,j + Si,j+1 + Si,j−1) (1)

We can also consider adding an applied external field H which adds a term to the
Hamiltonian −H

∑N
i=1

∑N
j=1 Sij. A more shorthand way to write this is

HΩ = −J
∑
〈ij〉

SiSj −H
∑

i

Si (2)

where the summation is over nearest neighbor spins and H is an externally applied
field.

Determine the “mean field” result for the Ising model. In other words, compare
your computed result to the mean field result. Mean-field theory begins formally by
rewriting the above Hamiltonian as,

HΩ = −J
∑
〈ij〉

Si〈Sj〉 − J
∑
〈ij〉

Si (Sj − 〈Sj〉)−H
∑

i

Si (3)

and then ignore the fluctuation term and solve the rather simple problem

HΩ = HΩ = −J
∑
〈ij〉

Si〈Sj〉 −H
∑

i

Si (4)

The term 〈Sj〉 is the average spin on site j given by

〈Sj〉 =
TrSj exp (−HΩ/kBT )

Tr exp (−HΩ/kBT )
(5)
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where the HΩ is given by the mean-field approximation in Eq. 4 with H = 0. The
magnetization M is given by,

M =
1

N(Ω)

N(Ω)∑
i=1

〈Si〉 (6)

Show that the transition temperature of the mean-field model at zero field (H = 0)
is given by kBTc = 4J for a two-dimensional square lattice. The transition state
is where the system alternates between paramagnetic (high temperatures) and fer-
romagnetic (low temperatures). (Hint: Write an equation for M and determine at
what temperature it has solutions other than M = 0). The exact result found by
Onsager is kBTc = 2J

log(1+
√

2)
≈ 2.2692J .

2. Write a code that uses a Metropolis Monte-Carlo algorithm to approximately com-
pute the average properties of the system for a two-dimensional Ising model. Write
your code in terms of the dimensionless parameter J/kBT . Use periodic boundary
conditions so that spins on the edge of your square interact with spins on the op-
posite edge. Write a function cluster(i,j) which computes the energy in a cluster of
spins centered on spin i, j. Write another function which uses cluster(i,j) to com-
pute the total energy of your square lattice of spins. Now here is the Monte-Carlo
algorithm which samples random states with probability in accord with the partition
function:

0. Begin with a random array of spins.

1. Compute the energy E1 of the current spin state.

2. Choose a spin on the lattice at random and flip its spin state.

3. Recompute the energy E2 of the new spin state.

4. Determine the energy difference ∆ = E1 − E2.

5. If ∆ ≤ 0, accept the current step in the ensemble. Save the current spins and
energy and return to 1.

6. If ∆ > 0, draw a random number between 0 and 1.

7. If the random number is less than exp (− ∆
kBT

), accept the current step into the
ensemble and save the current spins and energy. Return to 1.

8. If the random number is greater than or equal to exp (− ∆
kBT

), then reject the
current step. Reset the spins to what they were before the spin was flipped in step
2. Return to step 1.
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Evolve a lattice of 32× 32 spins. Make a plot of energy vs. iteration. You will find
that the system will equilibrate after a certain amount of time. After equilibrating,
average properties can be obtained. Accumulate the average magnetization. Obtain
expressions for the spin susceptibility and heat capacity. Compute these quantities
during your Monte-Carlo simulation. Establish (approximately) the transition point
kBTc/J . For your presentation, compare to the mean-field and exact results from
Onsager’s solution. We will discuss and compare critical exponents in each case. You
should run your code at kBT/J = 1, 1.5, 1.75, 2.0, 2.25, 2.5, and 3.0. Finite-size
effects are important near the transition point. Consider also an explanation for why
it is much harder to equilibrate n near kBT/J = 2.25.

For three-dimensional systems, no one has obtained an exact result for the Ising
model, and usually either computational or theoretical techniques using the renor-
malization group are used. A good reference for this is ”Lectures on Phase Transitions
and the Renormalization Group” by Nigel Goldenfeld.
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