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Classical size effect in single-crystalline films and wires

e Electron scattering leads to size-dependent resistivity.

A Model _
extrapolation :

Current
e Possibly metals with shorter bulk mean free paths P 1 cu, A=39nm . experimental
could be superior to Cu at smaller scales [1]. ? capability

e Results for W nanowires suggest single-crystal wires
exhibit resistivity size effect which depends on
crystallographic orientation [2].
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[1] Daniel Gall, “Electron mean free path in elemental metals,” J. Appl. Phys.119, 085101 (2016)

[2] D. Choi et al, “Crystallographic anisotropy of the resistivity size effect in single crystal tungsten
nanowires,” Sci. Rep. 3, 2591 (2013)
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Origin of surface scattering and early theoretical treatments

e Usually described as “roughness” — but microscopic origin or dominant mechanism
not clear.

e Point defects, substrate, surface steps, all cited as possible explanations for the
observed effect.

e Simple theoretical models include the Fuchs-Sondheimer model,

32(1 = p)
” <§ d )]

e (Quite often the specularity parameter p = 0 1s required to fit experimental data [3,4],
indicating completely diffusive surface scattering — not clear what produces this
strong surface scattering.

P = Po

[3] E. Milosevic et al, “Resistivity size effect in epitaxial Ru(0001) layers,” J. Appl. Phys.124, 165105 (2018)

[4] S. S. Ezzat ef al, “Resistivity and surface scattering of (0001) single crystal ruthenium thin films,” J. Vac. Sci. Tech. 37,
031516 (2019)
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Orthogonal Tight-binding model for Ru

e The states can be written as a vector, which amounts to a linear combination of orbitals

ly,) = Z C/I,ixl Dix) ‘/’1(?) = Z Cﬂ,ilc¢il<(?)

i,K i,K
® The hamiltonian operator connects sites together (hopping)

H= Z €ix | ¢i,x><¢i,x| + Z Lix, jx'| ¢i,x><¢j,,<'| Hilc,jlc' = Oy jK'fik + (1 =6, jK')tiK, iK'
IK IK#jK’ / \
OnSite Hopplng

. : _ 7551
* 9 orbitals per Ru site (4d, 5s, 4p) — [Kr] 4d75s energy energy

® Model parameters fit to DFT calculations obtained from Quantum Espresso
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E(k)[eV ]

Electronic band structure fits

—>

e Bloch states, TB and DFT band structures fit |y, ) = Z C, 7. €XP (z? R l) | b

il.x

Starting point were parameters for non-orthogonal TB model [5].

Band structure fits matched symmetry representation of the bands [6].
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[5] M. J. Mehl et al, Phys. Rev. B.54, 4519 (1996)
[6] W. E. Richardson et al, J. Appl. Phys. 130, 195108
(2021)
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Application of model to describe thin films

The model determined from the bulk calculations not immediately transferable to
surfaces — direct diagonalization of hamiltonian demonstrates excess electrons on
surfaces and edges

Lagrange multipliers added to onsite terms to impose local site neutrality
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Conductivity calculation using tight-binding electronic states

e The conductivity 1s evaluated use the Kubo-Greenwood equation

2rhe?

Tr [0, 8(E — ) 9,8 - D)

A d'i:a i N A
V, = = [H, xa]
dt h

e We use a basis of random 1nitial vectors to evaluate trace,

orhe? 184 . .
6,5 (E) — 2 (Ril 98(E — H)93(E — H) | R)
=0

e Very efficient! We can handle millions of sites — 10’s of nm scales
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Kernel polynomial method — expansion of Dirac Delta functions
into a Chebyshev polynomial series

|¥_(E)) = 8(E - H)V,|R) Y Rl
’ 2nhe” 1
oup (E) % o 3 (¥ (E) | 9 (E))

| @, (E)) = 9,6(E — H)|R) i=0

e We use a polynomial expansion of the Dirac delta functions — scales linearly with
system size

1 i N;—1 .
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Bulk transport, KPM vs. BTE using the tight-binding bands

Good agreement between KPM calculations and BTE which depends only on band
structure

Results fit for scattering to obtain agreement with experiment — number of moments
in KPM expansion scales linearly with computed resistivity
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Thin film structure — steps ~ 10nm apart

R
Film structures correspond closely to experiment

¢ Film ~ 140 nm long in the transport direction
[0001]

e Transport direction [1 IQO] !
[1100]

[1120]

e Two film orientations, (0001) and (1100) studied
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Results — two different surface orientations
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Theoretical interpretation of results

We followed the analysis previously published for films studied using non-
equilibrium Green’s functions (NEGF) [7].

Resistivity 1s determined from a “flat film” term with added terms due to scattering
from steps with transmission probability #(s) which depends on step height s

1 5/ 1 O
P=pff+_LZ ——1 o o R
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Comparison to experiment

e Very strong surface scattering not reproduced by surface steps

e Contribution due to stepped surfaces very minimal
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Size-dependent electron-phonon scattering?

Currently working on phonons, electron-phonon scattering

Model also determines cohesive energy, agrees with DFT results

Surface atoms less strongly bonded (fewer neighbors) likely have lower frequency
vibrational states, larger amplitude, perhaps scatter more effectively
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Surface relaxation, (0001) Ru

2.8% =
2.1%
Inward relaxation of outer layer, comparable to  14%

~3% relaxation in DFT. 075
0%

2-07% —

Converged surface energy, comparable to range -1.4%

of values 2.6-2.9 Jm-2 from DFT. 2.1%F

8%

3.5%F

Surface phonons, phonon band structures being 424t

Interlayer Space Number

computed 3327 . ———
330 -
Transport computed as ensemble average over
Bose-Einstein occupation of phonon states. iz 328 s
Lﬂ% 3.26 —
3241 |
3ol
4 6 8 10 12 14 16

Number of Layers
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Conclusions

Large-scale transport calculations possible with realistic TB models fit to DFT —
KPM method for transport.

Application to scattering at steps in Ru thin films — steps only make a minor
contribution

Electron-phonon scattering currently under investigation — might yield thickness-
dependent scattering
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