Test 1 Solution: Problem 5 (18 points)
One day in the early 1960 's, at 11 AM the eye of hurricane David passed over Orlando heading due North at a speed of $40.0 \mathrm{~km} / \mathrm{h}$. Three hours later, the course of the hurricane shifted to Northeast towards the Florida Atlantic coast and its speed decreased to $30.0 \mathrm{~km} / \mathrm{h}$. David continued on this course at this speed for eight hours before turning due north again.
A. How far from Orlando was the hurricane at 7 PM on the same day?

B. What was David's average speed during this time?

$$
\begin{aligned}
& \langle s\rangle=\frac{d}{\Delta t} \quad \begin{array}{l}
d=\text { total distance } \\
\text { traveled } \\
\Delta t=\text { time interval }
\end{array}=11 \mathrm{Am} \text { to } 7 P M \\
& \langle s\rangle=\frac{(120 \mathrm{~km}+150 \mathrm{~km})}{8 \mathrm{~h}}=\frac{270 \mathrm{~km}}{8 \mathrm{~h}}=33.8 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

C. What was David's average velocity during this time?

$$
\begin{aligned}
& \langle\vec{v}\rangle=\frac{\Delta \vec{r}}{\Delta t} \quad \begin{array}{l}
\vec{r}=\text { displacement }=250 \mathrm{~km} \\
\langle\vec{v}\rangle=\frac{250 \mathrm{~km}}{8 \mathrm{~h}}=31.3 \mathrm{~km} / \mathrm{h}
\end{array}
\end{aligned}
$$

D. Sketch a vector representing hurricane David's average acceleration during this time.

$$
\langle\vec{a}\rangle=\frac{\Delta \vec{v}}{\Delta t}
$$

Instructor's note: A very good solution with two minor omissions. First the solution does not show the calculation for distance or displacement for sI and sh. Second, part C with average velocity should indicate the direction of the velocity explicitly. A note saying the direction of the velocity is in the direction of the displacement calculated in part A would have been sufficient.

