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D
eactivation of catalytic Pt nanopar-
ticles (NPs) plays an important role
in heterogeneous catalysis since Pt

NPs are active for a number of industrially
relevant reactions such as oxidation of CO

and hydrocarbons in automotive catalytic

converters, NOx abatement, volatile organic

compound (VOC) combustion, catalytic hydro-

genation and reforming, and direct decompo-

sition of alcohols for hydrogen production.1�4

However, although the smallest Pt NPs may

offer desirable properties such as enhanced

catalytic activity and selectivity, as well as

the economic advantage of minimizing the

precious metal loading, short- and long-

term stability issues unfortunately limit their

applications. The primary routes to deacti-

vation of Pt NPs are through poisoning,

coarsening, dissolution in electrochemical

environments, and/or volatilization under
gas phase reaction conditions.5�11 Inher-

ently, NPs are metastable and susceptible
to coarsening because the high surface free
energy can beminimized by the coarsening

process.12,13 This process is limited kineti-
cally by intraparticle or interparticle diffu-

sion of atomic species.12 Hence, increased
temperatures tend to facilitate sintering. By

intraparticle diffusion of atomic species over
the surface of the NP, the whole particle can

migrate and cause coalescence, that is, fu-
sion with another NP. Alternatively, Ostwald

ripening can proceed through interparticle
migration of atomic species. Common to

both sintering mechanisms is that the cat-
alyst material is preserved on the support
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ABSTRACT The stability of Pt nanoparticles (NPs) supported on

ultrathin SiO2 films on Si(111) was investigated in situ under H2 and

O2 (0.5 Torr) by high-pressure X-ray photoelectron spectroscopy

(HP-XPS) and ex situ by atomic force microscopy (AFM). No indication

of sintering was observed up to 600 �C in both reducing and

oxidizing environments for size-selected Pt NPs synthesized by

inverse micelle encapsulation. However, HP-XPS revealed a compet-

ing effect of volatile PtOx desorption from the Pt NPs (∼2 and

∼4 nm NP sizes) at temperatures above 450 �C in the presence of
0.5 Torr of O2. Under oxidizing conditions, the entire NPs were oxidized, although with no indication of a PtO2 phase, with XPS binding energies better

matching PtO. The stability of catalytic NPs in hydrogenation and oxidation reactions is of great importance due to the strong structure sensitivity observed

in a number of catalytic processes of industrial relevance. An optimum must be found between the maximization of the surface active sites and metal

loading (i.e., minimization of the NP size), combined with the maximization of their stability, which, as it will be shown here, is strongly dependent on the

reaction environment.

KEYWORDS: platinum nanoparticle . inverse micelle . volatile PtOx
. high-pressure X-ray photoelectron spectroscopy . HP-XPS .
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surface, but the catalytic activity is reduced due to the
reduced number of active sites (i.e., decreased surface-
to-volume ratio).
Recently, the thermal stability of Pt NPs supported

on SiO2 has been the subject of several studies.
13,14 For

example, Simonsen et al.observed sintering of physical
vapor deposited Pt NPs on SiO2 and Al2O3 under
7.5 Torr of technical air (21% O2 and 79% N2) at 650 �C
by in situ transmission electron microscopy (TEM),
which was attributed to ripening.13,15 Other previous
studies have also discussed accelerated sintering rates
in O2 atmospheres.12,16 On other supports, such as
Al2O3, enhanced sintering stability and/or dispersion of
Pt NPs has been reported after O2 exposure at lower
temperatures (∼400 �C).17,18 In addition, NP migration
and ripening were not observed up to ∼700 �C under
ultrahigh vacuum (UHV) conditions for micelle-synthe-
sized Pt NPs supported on SiO2/Si(111).

14,19

Here, we report on the stability of Pt NPs synthesized
by inverse micelle encapsulation and supported on
SiO2/Si(111) at conditions closer to those relevant in
industrial applications. Using high-pressure XPS, we
have studied the properties of the Pt NPs in the
presence of elevated pressures of H2 and O2 (0.5 Torr).
From in situ XPS and ex situ AFM data, monodispersed
2 nm Pt NPs on a flat SiO2/Si(111) substrate show no
indication of sintering up to 600 �C in reducing and
oxidizing environments. However, it was observed that
the stability of catalytically active Pt NPs is hampered
by desorption of Pt, presumably as volatile PtOx species
formed above 450 �C in O2. For material systems with
limited diffusivity such as NPs dispersed in a porous
support, this PtOx desorption may result in coarsening
of theNPs causedby readsorptionof the volatilematerial.

RESULTS AND DISCUSSION

As depicted in Figure 1a,∼2 nmPtNPs supported on
SiO2/Si(111), sample S1, were cleaned by annealing in
0.5 Torr O2 (see also the Experimental Procedure
section) followed by reduction in 0.5 Torr H2 at 400 �C.
Subsequently, the temperature was changed to a
given temperature (T) and measured first in H2 fol-
lowed byO2. This cycle, beginningwith reduction in 0.5
Torr H2 at 400 �C, was repeated for different tempera-
tures (T) from 100 to 600 �C. Figure 1b shows HP-XPS
spectra of the Pt 4f core level region. The black and
blue curves were recorded in H2 at 400 �C and at the
stated temperatures, respectively, while the spectra
depicted in red were recorded in O2 at the tempera-
tures given. The black spectra show a slight, but clear,
increase of the Pt0 4f7/2 BE from 70.9 to 71.4 eV,
followed by a decrease in the peak intensities with
increasing annealing temperature. The BE values of
the Pt 4f7/2 species above are similar to reported values
for metallic Pt.14,19�23 No noticeable changes are ob-
served in the Pt 4f peak shapeswith temperature when
the Pt NPs are exposed to reducing conditions,

showing a narrow full width half-maximum (fwhm) of
1.1 eV. When the Pt NPs are exposed to O2, distinct
chemical shifts to higher BEs, ranging from 71.7 to
72.0 eV (Pt 4f7/2), are observed. Since the fwhm values
determined from fits of our XPS spectra in O2 (∼1.2 eV)
are similar to those in H2, the presence of a single
chemical state is inferred. The presence of significant
amounts of PtO2 can be ruled out based on the reported
Pt4þ 4f7/2 BE values from the literature ranging from 73.7
to 74.5 eV.14,19,24,25Moreover, if a PtO2phasewas present,
a Pt4þ 4f5/2 peak at∼77.1 eVwould be expected. Instead,
and in agreement with previous reports,14,19,21,23,26 the
oxide species in our samples is assigned to PtO.
Figure 2a,b shows the changes in the integrated

areas and BEs of the Pt 4f XPS peaks, respectively, as

Figure 1. (a) Flow diagram of the HP-XPS measurement
steps conducted on sample S1, Pt NPs (∼2 nm) supported
on SiO2/Si(111). The sample was initially annealed in O2 for
the removal of residual carbon followed by H2 for NP
reduction. Subsequently, the sample was subjected to
heating cycles in 0.5 Torr of H2 and O2 at specified tem-
peratures (T) increasing in steps from 100 to 600 �C. In each
cycle, before annealing at a given temperature in either O2

or H2, the sample was measured in 0.5 Torr of H2 at 400 �C.
(b) Series of Pt 4f XPS spectra recorded in 0.5 TorrH2 at 400 �C
(black), 0.5 Torr H2 at T (blue), and 0.5 Torr O2 at T (red). The
incident photon energy was 490 eV.
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a function of the annealing temperature in H2

(blue triangles) and O2 (red squares) at specified
temperatures (top horizontal axis). Reference data
acquired in H2 at 400 �C after each treatment are also
shown (black circles). During each cycle, when the HP-
XPS spectra are measured in the presence of O2 (red
squares), the Pt 4f signal intensities appear smaller as
compared to those in H2 at the same temperature. This
is attributed to the attenuation of the signal due to the
presence of oxygen atoms in the oxide phase and
possibly also to reversible shape changes of the Pt NPs
in O2.

27 On the contrary, data measured in H2 at 400 �C
(black circles) after the treatment in O2 indicate that
irreversible changes have taken place. A temperature
of ∼450 �C is found as the threshold for NP changes,
where a strong overall decrease in the Pt 4f peak areas
followed by an increase in the BEs is observed. The
comparison of the two sequential points (blackfblue)
in each cycle, Figure 2a, where one corresponds to the
measurements in H2 at 400 �C (black circles) and the
second to the subsequent increase in annealing tem-
perature (blue triangles) keeping the same H2 environ-
ment (e.g., 400 �Cf 450 �C, 400 �Cf 500 �C, 400 �Cf

550 �C, and 400 �C f 600 �C), shows no significant
differences in the total Pt 4f peak areas. This indicates

that the major irreversible changes in the Pt 4f signal
are only observed after the Pt NPs are annealed above
450 �C in an O2 atmosphere.
The origin of the observed intensity attenuation

could be assigned to one or more of the following
effects: sintering of the Pt NPs, NP shape changes
under different gas environments, or loss of Pt from
the NPs. In order to elucidate which of these effects
contributes themost, ex situ AFMmeasurements of the
treated sample S1 (“After”) and an identically prepared,
untreated sample (“Before”) were acquired and ana-
lyzed (Figure 2c,d). AFM is suitable not only for mea-
suring the size distribution of the Pt NPs but also for
determining their spatial distribution on the support.
As a result of the micellar preparation method,14,28,29 the
distribution of Pt NPs exhibits local hexagonal ordering,
with uniform interparticle distances determined by the
length of the diblock copolymer tails (PS group). The
autocorrelation images shown as insets in Figure 2c,d
show distinct rings corresponding to the particles' co-
ordination shells, revealing strong local ordering before
and after treatment with average NP nearest-neighbor
distances of 40 nm in both cases. Thus, sintering of the
NPs by particle migration did not occur for our micellar
NPs.4,14,18,19 Figure 2e shows the AFM NP height

Figure 2. Temperature dependence of the (a) integrated Pt 4f XPS peak areas and (b) Pt 4f7/2 XPS binding energies of sample
S1, Pt NPs (∼2 nm) supported on SiO2/Si(111), in 0.5 Torr H2 at 400 �C (black circles), 0.5 Torr H2 at T (blue triangles), and 0.5
Torr O2 at T (red squares). The values for the integrated areas are given in percent relative to the first point measured in 0.5
Torr H2 at 400 �C. Gray arrows indicate the order of themeasurements. Ex situAFM images of Pt NPs (c) before and (d) after the
high-pressure experiments. (e) NP height histogram extracted from the AFM images. Insets in (c) and (d) show the
corresponding autocorrelation images.
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histograms of the as-prepared (gray columns) and the
treated sample after the HP-XPS measurements (red
columns). The NPs in the as-prepared sample had an
average height of 2.0( 0.5 nm, while those subjected to
the high-pressure experiments had an average height of
1.3 ( 0.4 nm. Because NPs smaller than ∼0.5 nm are
difficult to unambiguously identify in the AFM images
due to the rough pearl-like structure of the amorphous
SiO2 support, the precise determination of particle count
on the sample after the treatments is difficult. A large
number of particles in the range of 0�0.5 nm have not
been counted in the latter case, and thus the height
distributions obtained from the AFM measurements of
the sample after treatment are biased toward a higher
average value. Considering the uncounted particles, the
true mean height is in the range of 0.8�1.3 nm.
These observations reveal that the decreasing XPS

areas obtained with increasing annealing temperature
above 450 �C can be primarily assigned to the loss of Pt
from the NPs, most likely desorbing as PtOx during the
annealing step in O2. The other plausible explanations
for the XPS signal attenuation, such as sintering or
shape change, are ruled out since both would lead to
increased or unchanged NP heights in AFM images.
Additionally, the positive Pt 4f BE shifts observed as a
function of annealing temperature above 450 �C
(Figure 2b) corroborate the finding that the Pt NPs
become smaller. This conclusion is based on the well-
established size-dependent initial and final state ef-
fects, which are known to lead to positive BE shifts.30

The attenuation in the HP-XPS signal is consistent with
the reduction in NP size measured by AFM. If a NP of
height h1 is reduced to a NP of height h2, andwith further
assumption that the NP has either spherical or hemisphe-
rical shape, the ratio of XPS intensities is given (through
application of the Beer�Lambert attenuation law) by

I(h2)
I(h1)

¼
1 � 1þ h2

λ

� �
exp �h2

λ

� �

1 � 1þ h1
λ

� �
exp �h1

λ

� � (1)

where λ is the inelasticmean free path (IMFP). From the
AFM analysis, the initial NP height was 2.0 ( 0.5 nm
(Figure 2e).31 Thus, if we use 2.0 nm as h1 in eq 1 and
I(h2)/I(h1) = 0.50, we can then estimate the final NP size
numerically. Using the value of 0.733 nm for the IMFP
of electronswith a kinetic energy of 420 eV,32,33 we find
a value of 1.0 nm for h2, which is consistent with the
measured AFM height of 0.8�1.3 nm.
In order to verify that the observed loss of Pt is

mediated by the elevated pressure of O2, we have
studied the thermal stability of another sample with
∼4nmPtNPs (S2), exclusively in thepresenceofO2 after
the initial cleaning in O2 and reduction in H2 at 400 �C.
The time dependence of the XPS Pt 4f peak area (red
circles, left axis) and the temperature (black line, right
axis) is shown in Figure 3a. A similar onset temperature

of ∼450 �C for the drastic Pt 4f XPS attenuation was
observed, confirming that the attenuation of the Pt
signal detected for S1 at high temperatures was indeed
caused by the high pressure of O2. Figure 3b,c shows
AFM images of sample S2 without treatment (“Before”)
and after the high-pressure experiments (“After”),
respectively. On the basis of the autocorrelation images
shown in the insets, the interparticle distance is ob-
served to be practically identical before (69 nm) and
after (72 nm) HP-XPS measurements. However, the
height histograms shown in Figure 3d show a drastic
decrease in the NP height from an initial average
height of 3.8 ( 1.3 nm to 1.3 ( 0.7 nm. Using eq 1, a
50% decrease in the HP-XPS signal (Figure 3a) leads to
an estimated 1.4 nm final NP size, indicating good
agreement between the model and AFM results. The
IMFP was set to 0.868 nm, corresponding to 550 eV
electrons.32,33

The loss of Pt from the NPs can be explained in terms
of the Pt oxidation kinetics and thermodynamics. The
entire NPs were observed to be oxidized in the pre-
sence of O2, but with no indication of PtO2 formation,
in agreement with a report by Wang et al.34 for
∼2.0 nm Pt NPs. It should be however noted that
there have also been theoretical reports suggesting
PtO2 as the most thermodynamically stable phase for
Pt NPs <6 nm under our experimental conditions.35,36

This finding suggests that the oxidation to PtO2 is
kinetically hindered by O2 dissociation on the oxidic
Pt NPs or by barriers for intraparticle mass transport.37

This is in agreement with previous reports that PtO,
rather than PtO2, was found to be the predominant
species after thermal treatments of supported Pt NPs in
O2,

4,34 and that PtO2 is observed after atomic oxygen
exposure14,19 where the barrier for dissociative adsorp-
tion of O2 is bypassed. It is plausible that the onset
temperatures for PtOx sublimation35,38 are lower than
the temperature required to overcome the kinetic
barrier for PtOx formation. Consequently, the forma-
tion of PtOx on the NP surface might immediately
lead to its desorption. The desorbing species may
be PtO2.
Pt volatilization has been observed in several studies

of Pt catalysts under oxidizing conditions similar to
those employed here.12,39�41 For example, Lamber and
Romanowski40 investigated the stability of Pt particles
grown on quartz by physical vapor deposition in
vacuum and in low pressures of oxygen (2.3 � 10�4

Torr) and observed substantial decreases in crystallite
size and Pt mass loss following oxygen treatments at
500 �C, while the vacuum treatments led to NP growth.
As discussed by Wynblatt and Gjostein12 and Harris,42

vaporization of PtO2 can contribute toNP coarsening in
a similar manner to surface diffusion, via the exchange
of Pt between particles through an Ostwald ripening
process. The fact that only a decrease in NP size during
O2 exposure at high temperature was observed in our

A
RTIC

LE



PORSGAARD ET AL. VOL. 6 ’ NO. 12 ’ 10743–10749 ’ 2012

www.acsnano.org

10747

study and that of Lamber is most likely due to the very
low rate of readsorption on our samples due to the
planar geometry and the long diffusion length in the
gas phase under the conditions of our experiments.
It should be noted that, in the similar studies by

Simonsen et al. employing in situ TEM of Pt NPs on SiO2

and Al2O3, significant coarsening of the NPs was ob-
served in 7.5 Torr technical air (21% O2 and 79% N2)
at 650 �C without apparent loss of Pt from the
surfaces.13,15 Similar results were obtained by Chu
and Ruckenstein,43 who studied Pt evaporated onto
an Al2O3 film, though in their case, NP diffusion and
coalescence were found to be the primary mode of
sintering. In the HP-XPS experiments reported here,
the differential pumping of gas into the analyzer
causes substantial gas flow near the sample surface,
whichmight helpminimize Pt (or PtOx) redeposition. In
the studies by Simonsen and Chu, it is possible that the
higher gas pressures and lower gas flows near the
surface allowed such redeposition. Potential differ-
ences in NP size, shape, and interaction with the
support due to the micellar preparation method
(exposure to oxygen plasma) may also play a role, as
could the initially substantially larger (40�70 nm vs

∼2�5 nmas in refs 13 and 15) interparticle distances in
our samples, potentially allowing diffusing surface PtOx

species to desorb before finding another particle.
The present work highlights the complexity of the

fundamental processes underlying catalyst stability
and emphasizes the importance of model catalyst
studies in gaining a fundamental understanding of the
dynamics of NP oxidation and sintering at the nanoscale.
Our study suggests that PtOx volatility plays an impor-
tant role in catalyst stability under oxidizing conditions.

CONCLUSION

From an interplay of in situ HP-XPS and ex situ AFM
measurements, the thermal stability of micellar Pt NPs
supported on SiO2/Si(111) was investigated under 0.5
Torr of reducing and oxidizing gaseous (H2 and O2)
environments. No indication of NP sintering (Ostwald
ripening or diffusion coalescence) was observed up to
600 �C after exposure to H2 and O2, although such an
effect could be counteracted by the Pt loss observed in
O2 at temperatures above ∼450 �C. When probed
under oxidizing conditions, HP-XPS shows a drastic
decrease in the Pt 4f signal at temperatures above
∼450 �C. It is shown that this irreversible Pt 4f signal

Figure 3. (a) Temperature and time evolution of the integrated Pt 4f XPS peak areas (closed circles) of sample S2, Pt NPs
(∼4 nm) supported on SiO2/Si(111), in O2 atmosphere (0.5 Torr). AFM images of the NPs (b) before and (c) after the high-
pressure experiments. (d) Histogram of NP height measurements extracted from the AFM images. Insets in (b) and
(c) show the corresponding autocorrelation images. In (a), the XPS spectra were recorded with an incident photon
energy of 620 eV.
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attenuation is caused by the formation of volatile PtOx

species. However, comparison of the AFM autocorrelation
images acquiredbefore and after theHP-XPS experiments

did not show any clear changes in the spatial distribution
of the particles (i.e., NP mobility), indicating the strong
adhesion of the particles to the support.

EXPERIMENTAL PROCEDURE
Size-selected Pt NPs were synthesized by the inverse micelle

encapsulation technique as described in detail in refs 14, 28, and
29. Briefly, two types of commercially available nonpolar/polar
diblock copolymers, poly(styrene)-block-poly(2-vinylpyridine)
[S1: PS(27700)-b-P2VP(4300) and S2: PS(53000)-b-P2VP(43800)],
were dissolved in toluene in order to form inverse micelles.
Subsequently, the micelles were loaded with a H2PtCl6 3 6H2O
salt. The size selection was obtained by varying the molecular
weight of the polymer core (P2VP) and by changing the metal
salt/P2VP ratio. Themetal loadings (metal/P2VP ratio) usedwere
0.2 for S1 and 0.05 for S2. The interparticle distance was
determined by the lengths of the nonpolar tails (PS). A mono-
layer-thick film of polymer-encapsulated Pt NPs was obtained
upon dip-coating naturally oxidized amorphous SiO2/Si(111)
substrates into the metal-loaded polymeric solution. The en-
capsulating polymer was removed in a commercial UHV surface
analysis system (SPECS GmbH) via an O2 plasma treatment
(P[O2] = 3.0 � 10�5 Torr for 100 min) at room temperature.
Samples with NP sizes of 2.0( 0.5 nm (S1) and 3.8( 1.3 nm (S2)
were obtained by the method described above.
HP-XPS experiments were performed at the beamline 9.3.2 of

the Advanced Light Source (ALS) at Lawrence Berkeley National
Laboratory.44,45 The system consists of an analysis chamberwith
an electron spectrometer mounted on a differentially pumped
electrostatic lens system that allows XPS measurements in gas
environments up to 1 Torr. The base pressure in this chamber is
∼3 � 10�10 Torr. O2 and H2 gases were dosed individually by
backfilling the chamber through a leak valve. Each sample
transferred to the HP-XPS analysis chamber was further cleaned
in situ by annealing in an O2 atmosphere (0.5 Torr) at 400 �C for
30 min to remove any residual carbon species. After this
cleaning procedure, no C 1s signal was observed in XPS.
Subsequently, the oxidized Pt NPs were annealed in H2 (0.5
Torr) at 400 �C, as shown in Figure 1a. After this treatment, the
reduction of the NPs was confirmed by XPS. No significant
decrease in the Pt 4f intensity was observed after the cleaning
and reduction procedures. Samples S1 and S2 received different
treatments during the HP-XPS measurements. As depicted in
Figure 1a, sample S1 was alternately measured in H2 (0.5 Torr)
and in O2 (0.5 Torr) for 15 min while keeping the sample at a
desired temperature. Prior to each cycle, the sample was
annealed at 400 �C in 0.5 Torr of H2 until XPS showed complete
reduction of the PtOx species to themetallic state. The cycle was
repeated by stepwise increasing the temperature for each
cycle from 100 to 600 �C, which was themaximum temperature
allowed in the experimental setup. Sample S2 was measured only
in an O2 atmosphere (0.5 Torr), monitoring both the temperature
and temporal dependence on the Pt 4f signal decay.
The binding energy (BE) scale was calibrated using the Si0 2p

peak at 99.3 eV of the NP substrate [SiO2(4 nm)/Si(111)]. The BE
of Si0 2p was measured initially using as reference the Au 4f7/2
(84.0 eV) signal of a small Au foil mounted on the sample holder
adjacent to the sample. Quantitative analysis was performed by
subtracting a Shirley-type background46 and fitting each XPS
spectrum using two asymmetric Voigt line shapes separated by
3.3 eV corresponding to the spin�orbit splitting of Pt 4f7/2 and
Pt 4f5/2 peaks.
Characterization of the sample morphology (NP size and

interparticle distance) before and after HP-XPS was performed
by ex situ AFM imaging in tapping mode (Digital Instruments,
Multimode). Noncontact silicon AFM tips with an end radius
below 10 nm were used. The cantilevers used have resonant
frequencies in the range of 200�300 kHz with spring constants
between 20 and 30 N/m. A typical scan rate of 1 Hz was used to
acquire the AFM images, and the tip�sample interaction was
minimized to avoid tip-induced distortions of the NPmorphology

and NP lateral displacements during scanning. Due to tip con-
volution effects, theNPheight (rather than the diameter) has been
used here as representative size parameter.
Beam-induced effects were excluded by changing the sam-

ple position at the end of each XPS experiment to confirm that
the samples remained homogeneous. The beam spot was
0.5 mm � 1 mm, while the sample size was 9 mm � 9 mm.
Thus, beam-induced effects would be easily detected by this
procedure. AFM imaging of different areas of the sample
showed no indication of inhomogeneity before and after the
HP-XPS experiments.
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