Nano-Gold Diggers: Au-Assisted SiO₂-Decomposition and Desorption in Supported Nanocatalysts

Luis K. Ono,† Farzad Behafarid,† and Beatriz Roldan Cuenya†,‡,*

†Department of Physics, University of Central Florida, Orlando, Florida 32816, United States, and ‡Department of Physics, Ruhr University Bochum, 44780 Bochum, Germany

ABSTRACT An investigation of the thermal stability of size-selected Au nanoparticles (NPs) synthesized via inverse micelle encapsulation and deposited on SiO₂(4 nm)/Si(100) is presented. The size and mobility of individual Au NPs after annealing at elevated temperatures in ultrahigh vacuum (UHV) was monitored via atomic force microscopy (AFM). An enhanced thermal stability against coarsening and lack of NP mobility was observed up to 1343 K. In addition, a drastic decrease in the average NP height was detected with increasing annealing temperature, which was not accompanied by the sublimation of Au atoms/clusters in UHV. The apparent decrease in the Au NP height observed is assigned to their ability to dig vertical channels in the underlying SiO₂ support. More specifically, a progressive reduction in the thickness of the SiO₂ support underneath and in the immediate vicinity of the NPs was evidenced, leading to NPs partially sinking into the SiO₂ substrate. The complete removal of silicon oxide in small patches was observed to take place around the Au NPs after annealing at 1343 K in UHV. These results reveal a Au-assisted oxygen desorption from the support via reverse oxygen spillover to the NPs.

KEYWORDS: Au nanoparticle · SiO₂ · Si · AFM · atomic force microscopy · XPS · X-ray photoelectron spectroscopy · NP-support interaction

It has been shown that the catalytic properties of small Au nanoparticles (NPs) (<5 nm) can be controlled by modifying their size.1−7 Additionally, metal—support interactions also affect the activity and selectivity of nanoscale Au catalysts.8−11 While NP catalysts exhibit many favorable properties, they are prone to drastic structural/morphological changes in response to different thermal and chemical environments.12−16 The latter include undesired coarsening phenomena leading to reduced surface areas and a consequent decrease in reactivity and change in selectivity.17−21 Therefore, a thorough understanding of the processes that affect the stability of NP catalysts and when possible, its enhancement via the selection of novel synthesis approaches,22,23 sample pretreatments,24 or stabilizing supports,25−28 is crucial for the application of these systems in an industrial setting.29,30

Numerous previous studies described thermally22,23,37−40 and chemically-induced32,24,29,41−44 deactivation processes of NP catalysts involving sintering. Two pathways for NP sintering were generally proposed: (i) Ostwald ripening (OR), in which atom-by-atom diffusion predominantly occurs from small to large clusters,45−47 and (ii) the diffusion of entire NPs and subsequent coalescence with other NPs.48 Since the driving force behind coarsening phenomena is to reduce the surface energy of the NPs, the tendency of a NP catalyst to sinter strongly depends on its average size and size distribution.49−53 Additionally, the interparticle spacing also affects sintering, with widely spaced NPs showing enhanced stability.23,29

Nanoparticle-support interactions play a key role in the stabilization of nanoscale systems under environmental conditions, with parameters such as the chemical composition or reducibility of the oxide support22,23 and its thickness54 having a strong influence in NP sintering. The present work describes the outstanding stability against sintering of narrowly sized distributed micellar Au NPs homogeneously dispersed over SiO₂(4 nm)/Si(100) substrates upon high temperature thermal treatments in ultrahigh vacuum (UHV). The morphological evolution of individual NPs was monitored ex situ via
atomic force microscopy (AFM) with the aid of a NP tracking technique based on a substrate marker. For our micelle-synthesized NPs, no NP mobility was detected upon annealing in UHV up to 1343 K. Moreover, low-temperature Au-assisted silicon oxide decomposition was detected, with the gold NPs digging channels in the SiO2 support. This interesting effect results in the enhanced stability of the NPs against sintering, while a significant fraction of the NP surface area remains accessible to reactants. The latter makes them promising materials for catalysis and sensing applications.

RESULTS AND DISCUSSION

Figure 1 shows AFM images of a Au NP/SiO2/Si(100) sample acquired at room temperature (RT) after the following treatments: (a) O2-plasma (ligand removal), (b) heating in UHV at 500 K, (c) 1000 K, and (d) at 1343 K. A reference mark at the bottom of each image allows us to investigate the same sample region ex situ after the different in situ treatments. Table 1 contains information on the average NP height and interparticle distances of our sample after the annealing treatments. The corresponding histograms are shown in Figure 2 and Supporting Information, Figure 1. After O2-plasma exposure, a uniform arrangement of monodispersed Au NPs (homogeneous image brightness and associated NP height) is observed (Figure 1a). Annealing at 500 K leads to an increase in the number of bright spots in the images, revealing the gradual loss of the regularity in the NP height distribution (Figure 1b). Subsequent annealing at 1000 K (Figure 1c) leads to a more pronounced height contrast, indicating the existence of a wider size distribution. The images in Figure 1 and related interparticle distance histograms (Supporting Information, Figure 1) indicate the lack of mobility of our Au NPs, ruling out possible NP coarsening phenomena via diffusion-coalescence. In addition, no increase in the average NP height was observed upon heating for the majority of the NPs, Figure 2, but a progressive decrease from 4.6 ± 1.1 nm (as prepared ligand-free NPs), to 2.8 ± 1.3 nm after heating at 500 K, 2.0 ± 1.3 nm after 1000 K, and 2.1 ± 1.6 nm after 1343 K. Despite the fact that the majority of the NPs in our

<table>
<thead>
<tr>
<th>treatments</th>
<th>height (nm)</th>
<th>interparticle distance (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2-plasma</td>
<td>4.6 ± 1.1</td>
<td>76 ± 19</td>
</tr>
<tr>
<td>500 K (30 min)</td>
<td>2.8 ± 1.3</td>
<td>72 ± 16</td>
</tr>
<tr>
<td>1000 K (30 min)</td>
<td>2.0 ± 1.3</td>
<td>76 ± 20</td>
</tr>
<tr>
<td>1343 K (1 min)</td>
<td>2.1 ± 1.6</td>
<td>74 ± 21</td>
</tr>
</tbody>
</table>
The obtained Au NPs after (a) an O₂-plasma treatment at RT and subsequent heating in UHV at (b) 500 K, (c) 1000 K, and (d) 1343 K (see Figure 1 for details).

Figure 2. NP height histograms based on AFM images of Au NPs on SiO₂(4 nm)/Si(100). The data displayed were obtained after (a) an O₂-plasma treatment at RT and subsequent heating in UHV at (b) 500 K, (c) 1000 K, and (d) 1343 K (see Figure 1 for details).

While Ostwald ripening might explain the growth of a small number of large particles, it does not explain the significant height reduction observed for the majority of the NPs. A part of this decrease could be explained based on the reduction of Au oxide species formed during the O₂-plasma treatment. Considering the density of Au₂O₃ of 11 g/cm³,35 and that of metallic Au of 19.3 g/cm³, the final NP volume after the complete reduction of the gold oxide species would be ~0.6 of the initial volume. Nevertheless, such reduction in volume would translate to only ~17% reduction in NP height, which is insignificant as compared to the strong decrease in size observed.

Another possibility that should be taken into consideration is the formation of Au silicide species. It has been shown that even at relatively low temperatures, metals such as Au could form silicides when deposited on bare silicon substrates.56–58 However, such behavior is not expected when the Au films or nanoparticles are separated from the silicon interface by relatively thick (~4 nm in the present case) SiO₂ films. We have ruled out such a possibility on the basis of the lack of gold silicide features in our Au-4f XPS spectra. The formation of gold silicide has been shown to shift the Au-4f peaks to higher binding energies, for example, from ~84.1 eV expected for bulk gold up to ~85.1 eV in a study conducted on a thick Au overlayer deposited on a bare silicon substrate.59 In our example, the Au-4f spectra could be fitted with only one component, demonstrating the chemical homogeneity of the NPs, and the binding energies measured (Au-4f/7/2 ~84.6 eV) are significantly lower than those characteristic of Au silicide. It should be noted that the smaller shifts observed here in the Au-4f core levels are typical of small NPs and are assigned to size effects.60,61 Accordingly, if Au silicide species were present in our samples, it should be in minute amounts well below our detection limit, and these species are not likely to play any significant role in the NP stability or drastic height reduction observed.

An additional plausible explanation for the overall particle height reduction is the loss of Au atoms through a sublimation process. In contrast to melting temperature of ~1337 K52 for bulk Au, a lower melting temperature of ~1150 K has been reported for ~5 nm Au NPs.52–64 To investigate this possibility, XPS measurements were conducted after the different chemical/thermal treatments (Figure 3). For a sample treated in situ, the ratio of Au-4f/Si-2p areas remains nearly constant after all treatments up to 1343 K (~0.24, see Supporting Information, Table 1), indicating the lack of gold sublimation or loss in UHV (Figure 3a). However, a different behavior is observed when an analogously treated sample is exposed to air after each in situ treatment, as was the case of the sample used here for AFM analysis. In the latter case, the gold oxide species present in the as-prepared sample after atomic oxygen exposure disappear after air exposure for 20h at room temperature, Figure 3b. A similar finding was reported for the decomposition of oxidized bulk gold samples by Tsai et al.,65 and air moisture was shown to be involved in this phenomenon, since no Au reduction was observed in dry CO₂ after 6 days.66 Nevertheless, it should be noted that our XPS data did not reveal the decomposition of Au₂O₃ into metallic Au upon air exposure, but its disappearance and consequent loss of gold. In fact, while the XPS area under the Au metallic peak remains similar before and after air exposure, the oxide component vanishes entirely. This finding indicates that the mechanism underlying the reduction of Au₂O₃ at room temperature in air involves the loss (volatilization) of Au oxide species, and not its decomposition to metallic gold.
accompanied by oxygen desorption. To rule out the signal damping due to carbon deposition during air exposure, the same sample was additionally cleaned by an O2-plasma, but the Au-4f intensity did not recover its initial value (Figure 3b). Therefore, we can conclude that the strong decrease in NP height observed via AFM for the sample exposed to air from RT to 500 K can be at least partially assigned to the loss of the Au2O3 species. Nevertheless, a different phenomenon must underlie the further decrease in AFM NP height observed above 500 K, when no (or only a small fraction) Au2O3 species were present in our sample. Since for NPs within this size range AFM measurements do not provide reliable information on the NPs lateral size, the alternative possibility of NP flattening as being responsible for the observed decrease in the NP height was considered. Nevertheless, following the Beer–Lambert attenuation law, such NP flattening should increase the Au-4f/Si-2p ratio due to the smaller travel length of Au photoelectrons inside the NPs upon the 3D (spherical) to 2D (flat) NP shape change, which was not observed here.

A final possibility to explain the apparent reduction in gold NP size upon annealing above 500 K is their incorporation into the SiO2 support (“nano-Au diggers”), that is, their ability to dig channels into the underlying SiO2 substrate by contributing to its decomposition and subsequent desorption. The loss of SiO2 patches around the NPs is in fact observed in Figure 1d. This phenomenon could explain the enhanced stability and the lack of NP mobility observed by AFM. To explore this hypothesis and to gain further insight into the role of the Au NPs in this SiO2 decomposition process (T ≤ 1343 K), XPS data of the Si-2p core level region were acquired after the different treatments. Figure 4a shows XPS data of a pristine silicon substrate (NP-free) with a thin layer of natural oxide and also a ligand-free Au NP/SiO2 sample after annealing at 1000 K. The contribution of the Si4+ peak (at ∼103.3 eV) is much larger for the Au NP/SiO2 sample than for the clean natively oxidized SiO2/Si(001) substrate due to the O2-plasma treatment undergone by the former. Considering the inelastic mean free path (IMFP) of photoelectrons, an estimation of the oxide layer thickness was made based on the Si0, Si+, and Si4+ XPS intensities. The details on the method used for the calculation of the oxide thickness are provided in the supplementary documents. Here, we need to mention that the Si4+/Si0 ratio obtained by XPS is not affected by the presence of the Au NPs on the support surface due to their low coverage and to the fact that Si0 and Si4+ photoelectrons have similar inelastic mean free paths inside the Au NPs, and therefore, such signals will be...
affected in the same manner by the presence of the Au overlayer.

The summary of the oxide thicknesses obtained after the different thermal treatments is displayed in Figure 4b for three different samples: (i) sample S1, Au NP/SiO2/Si(100) pretreated with an O2-plasma, (ii) sample S2, a pristine silicon substrate treated with an O2-plasma similarly to S1, and (iii) sample S3, a pristine Si(100) substrate with a thin native oxide overlayer and no plasma treatment. A drastic difference in the oxide thicknesses could be observed for the two samples that were treated with the O2-plasma (S1, S2) as compared to the natively oxidized one (S3). Nevertheless, although directly after the plasma treatment samples S1 and S2 have similar oxide thicknesses, after the first annealing at 500 K the oxide thickness increases for S1, while it decreases slightly for S2. This observation hints toward an oxygen spillover effect from the Au NPs present in S1 to SiO2, which results in excess oxygen inside our amorphous SiO2 film. The mild annealing at 500 K might allow the diffusion of interstitial oxygen trapped in the oxide layer to the underlying Si(100), resulting in the further growth of the oxide layer. As can be seen from the data of S2, such phenomenon does not occur in the absence of the Au NPs. Our findings are in agreement with a previous study by Campbell,67 showing that when bimetallic surfaces are oxidized, the dissociation temperature of the most stable oxides upon heating in UHV is generally reduced in the presence of a metal with a less stable oxide.

By annealing the samples at higher temperature (i.e., 1000 K), a decrease in the oxide thickness is observed for S1, which is explained based on the decomposition of SiO2. The same phenomenon is not observed for the NP-free samples (S2, S3), suggesting that the Au NPs might act as catalysts to reduce the underlying oxide support at relatively mild temperatures for this system. Such reduction should occur at the NP-support interface, leading to the removal of the SiO2 support underneath the NPs, with the NPs becoming partially embedded into the oxide layer. At the highest annealing temperature of this study (1343 K), the removal of big patches of silicon dioxide is evident around some of the Au NPs, Figure 1d. Here we have to keep in mind the AFM tip convolution effect resulting in an overestimation of the NP diameter. Such effect might mask the formation of recessions and areas of missing oxide around the NPs at lower temperatures, only becoming visible when they extend far beyond the NP perimeter. Therefore, at low temperature, the only indication of the Au NPs sinking into the support is the apparent decrease in their height.

Figure 5 features high resolution AFM images from a selected sample region where the desorption of oxide patches around the Au NPs was observed at 1343 K. As expected, the height profiles from the NPs surrounded by dark rings (missing silicon oxide) reveal a rather similar NP height when comparing 500 K and 1343 K data, confirming that no significant loss of Au occurred under the experimental conditions. Therefore, the apparent decrease in height of these NPs at intermediate temperatures could be accounted for by considering the changes in the SiO2 thickness underneath the NPs and the incorrect assumption of the SiO2 base background in the histograms of Figure 2.

The major morphological changes observed for the micelle-synthesized Au NPs supported on SiO2/Si are schematically depicted in Figure 6. The NP in the as...
EXPERIMENTAL SECTION

Hexagonally ordered arrays of Au NPs were synthesized by an inverse micelle encapsulation technique.1,2,9,41,53,71 Reverse micelles formed from the dissolution of polystyrene-block-poly(2-vinylpyridine) [PS(x)-b-P2VP(y)], Polymer Source Inc. in toluene are subsequently loaded with HAuCl₄·3H₂O. The NP size is tuned by changing the molecular weight of the polymer core (P2VP) and by tuning the gold salt to P2VP ratio. The molecular weight of the polymer tail (PS) determines the interparticle distance. The polymer used for the synthesis was PS(81000)-b-P2VP(142000), with a metal salt/P2VP concentration ratio of 0.2.

Amorphous naturally oxidized SiO₂ thin films on Si(100) wafers were used as substrates. A reference mark was made on the substrate surface prior to NP deposition with a diamond scribe. Substrate dip-coating into the gold polymeric solution at a speed of 10 mm/min resulted in a monolayer-thick film of nearly monodispersed micelles containing Au NPs.

The ex situ prepared samples were transferred into a UHV system for the removal of the encapsulating ligands via an O₂ plasma treatment (P₀₂ = 5.5 × 10⁻³ mbar for 100 min) at room temperature (RT). The thermal stability of the NPs was monitored ex situ at RT via AFM (Digital Instruments Nanoscope III, www.diny.com). The thermal stability and mobility of size-selected micellar Au NPs supported on SiO₂/Si(100) was studied by AFM. Our microscopy data evidenced lack of NP mobility up to 1343 K but an overall apparent decrease in the NP height with increasing annealing temperature which, according to XPS, could not be explained in terms of Au sublimation. The drastic morphological changes observed upon heating at relatively low temperature (<1000 K) can only be understood if the desorption of oxygen and decomposition of SiO₂ underneath the NPs and at their perimeter is considered, leading to NPs sinking into the thin SiO₂ substrate. The latter effect might also explain the superior thermal stability of the NPs against sintering, since they become trapped into substrate channels that they create themselves by assisting the decomposition of SiO₂ species and subsequent desorption of SiO and O₂. The preferential removal of oxide patches, although initially nucleated by NPs, could subsequently grow further on its own with increasing annealing temperature or time. This material system is expected to be of interest for high temperature applications where sintering-resistant oxide-supported metal NPs are required.

CONCLUSION

The thermal stability and mobility of size-selected micellar Au NPs supported on SiO₂/Si(100) was studied by AFM. Our microscopy data evidenced lack of NP mobility up to 1343 K but an overall apparent decrease in the NP height with increasing annealing temperature which, according to XPS, could not be explained in terms of Au sublimation. The drastic morphological changes observed upon heating at relatively low temperature (<1000 K) can only be understood if the desorption of oxygen and decomposition of SiO₂ underneath the NPs and at their perimeter is considered, leading to NPs sinking into the thin SiO₂ substrate. The latter effect might also explain the superior thermal stability of the NPs against sintering, since they become trapped into substrate channels that they create themselves by assisting the decomposition of SiO₂ species and subsequent desorption of SiO and O₂. The preferential removal of oxide patches, although initially nucleated by NPs, could subsequently grow further on its own with increasing annealing temperature or time. This material system is expected to be of interest for high temperature applications where sintering-resistant oxide-supported metal NPs are required.
tapping mode) after in situ (UHV) annealing at 500 K (for 30 min), 1000 K (for 30 min), and 1343 K (for 1 min). The AFM tip was positioned close to the reference mark made on the SiOx/Si(100) substrate with the aid of an optical microscope, and silicon nitride AFM tips with an end radius below 10 nm were used for scanning. The cantilevers employed have resonant frequencies in the range of 300–330 kHz with spring constants of about 42 N/m. A typical scan rate of 1 Hz was used to acquire the images, and the tip–sample interaction was minimized to avoid tip-induced distortions in the NP shape and/or NP arrangement during scanning. Because of tip-convolution effects, the NP height (and not the diameter) was used as representative size parameter. Our NP tracking method allows monitoring changes in the chemical composition of the NPs and SiOx/Si(100) support after the O2-plasma treatments and UHV annealing. No CI-2p signal was detected by XPS after O2 plasma treatment.

Conflict of Interest: The authors declare no competing financial interest.

Supporting Information Available: Additional AFM and XPS data analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgment. This work was supported by the US National Science Foundation, NSF-CHM-1213182. Partial financial support by the Cluster of Excellence RESOLV (DFG-EXC-1069) at the Ruhr-University Bochum is also acknowledged.

REFERENCES AND NOTES


