
Chapter 9 – Rotation and Rolling

II. Rotation with constant angular acceleration

III. Relation between linear and angular variables

- Position, speed, acceleration

I. Rotational  variables

- Angular position, displacement, velocity, acceleration

IV. Kinetic energy of rotation

V. Rotational inertia

VI. Torque

VII. Newton’s second law for rotation

VIII. Work and rotational kinetic energy

IX. Rolling motion



I. Rotational variables

Rigid body: body that can rotate with all its parts locked together and 
without shape changes.

r

s

radius

lengtharc
==θ

Rotation axis: every point of a body moves in a circle whose center lies
on the rotation axis. Every point moves through the same angle during
a particular time interval. 

Angular position: the angle of the reference line relative to the positive 
direction of the x-axis.

Units: radians  (rad)

Reference line: fixed in the body, perpendicular to the rotation axis and 
rotating with the body.
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complete rotation of the reference line about 
the rotation axis. 2 turns � θ =4π

Translation: body’s movement described by x(t).

Rotation: body’s movement given by θ(t) = angular position of the body’s 
reference line as function of time.

Angular displacement: body’s rotation about its axis changing the 
angular position from θ1 to θ2.
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Clockwise rotation   � negative
Counterclockwise rotation � positive

Angular velocity:
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Units: rad/s or rev/s



These equations hold not only for the rotating rigid body as a whole but 
also for every particle of that body because they are all locked together.

Angular speed (ω): magnitude of the angular velocity.

Angular acceleration:
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Angular quantities are “normally” vector quantities � right hand rule.

Object rotates around the direction of the vector � a 
vector defines an axis of rotation not the direction in 
which something is moving.

Examples: angular velocity, angular acceleration



Angular quantities are “normally” vector quantities �

right hand rule.

Exception: angular displacements  

The order in which you add two angular 
displacements influences the final result � ∆θ is 
not a vector.

II. Rotation with constant angular  
acceleration
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Linear equations Angular equations
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III. Relation between linear and angular variables

Position: rs ⋅= θ θ always in radians

Speed:
rv

dt

d
r

dt

ds
⋅=→= ω

θ ω in rad/s

Since all points within a rigid body have the same 
angular speed ω, points located at greater distance 
with respect to the rotational axis have greater linear 
(or tangential) speed, v. 

v is tangent to the circle in which a point moves

If  ω=constant, v=constant � each point within the body undergoes 
uniform circular motion.

Period of revolution: ω
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Acceleration:
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Tangential component 
of linear acceleration

Radial component of
linear acceleration:
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Responsible for changes in the direction of the linear velocity vector v

IV. Kinetic energy of rotation

Reminder: Angular velocity, ω is the same for all particles within the 
rotating body. 

Linear velocity, v of a particle within the rigid body depends on the 
particle’s distance to the rotation axis (r).

Units: m/s2

Responsible for changes in 
the magnitude of the linear 
velocity vector v.
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Rotational inertia = Moment of inertia, I:
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Indicates how the mass of the rotating body is 
distributed about its axis of rotation.

The moment of inertia is a constant for a particular 
rigid body and a particular rotation axis.

Units: kg m2

Example: long metal rod.

Smaller rotational inertia in (a) � easier to rotate.
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Kinetic energy of a body in pure 
rotation

Kinetic energy of a body in pure 
translation
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V. Rotational inertia

Discrete rigid body � I =∑miri
2 Continuous rigid body � I = ∫r2 dm



Parallel axis theorem
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Proof:

Rotational inertia about a given axis = Rotational
Inertia about a parallel axis that extends trough body’s 
Center of Mass + Mh2

h = perpendicular distance between the given axis 
and axis through COM.
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VI. Torque

Torque: Twist � “Turning action of force F  ”.
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r┴ : Moment arm of F

r : Moment arm of Ft

Units: Nm

Sign: Torque >0 if body rotates counterclockwise.          
Torque <0 if clockwise rotation.

Superposition principle: When several torques act on a body, the net torque 
is the sum of the individual torques

Vector quantity

Tangential component, Ft: does cause rotation 
� pulling a door perpendicular to its plane. 

Ft= F sinφ

Radial component, Fr : does not cause rotation 
� pulling a door parallel to door’s plane.



VII. Newton’s second law for rotation
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Proof:

Particle can move only along the circular path �
only the tangential component of the force Ft

(tangent to the circular path) can accelerate the 
particle along the path.
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VIII. Work and Rotational kinetic energy

Translation Rotation
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Work-kinetic energy 
Theorem

Work, rotation about fixed axis

dFW ⋅= )( ifW θθτ −= Work, constant torque
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fixed axis

Proof:
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IX. Rolling

- Rotation + Translation combined.
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Smooth rolling motion

Example: bicycle’s wheel.

The motion of any round body rolling smoothly over a surface can be 
separated into purely rotational  and purely translational motions.



- Pure rotation.

Rotation axis � through point where wheel contacts ground.

Angular speed about P = Angular speed about O for stationary observer.
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- Kinetic energy of rolling.
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Instantaneous velocity vectors = sum of translational 
and rotational motions.
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A rolling object has two types of kinetic energy � Rotational: 0.5 ICOMω2        

(about its COM).
Translational: 0.5 Mv2

COM  

(translation of its COM).



- Forces of rolling.

(a)Rolling at constant speed � no sliding at P
� no friction.

(b) Rolling with acceleration � sliding at P �
friction force opposed to sliding.

Static friction ���� wheel does not slide � smooth
rolling motion � aCOM = α R

Sliding

Increasing acceleration

Example1: wheels of a car moving forward while its tires are spinning 
madly, leaving behind black stripes on the road � rolling with slipping = 
skidding �Icy pavements.
Antiblock braking systems are designed to ensure that tires roll without 
slipping during braking.



Example2: ball rolling smoothly down a ramp. (No slipping).

Sliding 

tendency

2. Rolling without sliding � the point of contact
between the sphere and the surface is at rest
� the frictional force is the static frictional force.

3. Work done by frictional force = 0 � the point
of contact is at rest (static friction).

1. Frictional force causes the rotation.  Without 
friction the ball will not roll down the ramp, 
will just slide.



Example: ball rolling smoothly down a ramp.

xCOMsxxnet MaMgfmaF ,, sin =−→= θ

Note: Do not assume fs = fs,max . The only fs requirement is that its 
magnitude is just right for the body to roll smoothly down the ramp, 
without sliding.

Newton’s second law in angular form
� Rotation about center of mass
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Linear acceleration of a body rolling along an 

incline plane
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Example: ball rolling smoothly down a ramp of height h

Conservation of Energy

Although there is friction (static), there is no loss of Emec because the point 
of contact with the surface is at rest relative to the surface at any instant



- Yo-yo

Potential energy (mgh)� kinetic energy:  translational 
(0.5mv2

COM) and rotational (0.5 ICOMω2)

Analogous to body rolling down a ramp:

- Yo-yo rolls down a string at an angle θ =90º with 
the horizontal.

- Yo-yo rolls on an axle of radius R0.
- Yo-yo is slowed by the tension on it from the 
string.

2

0

2,
/1/1

sin

MRI

g

MRI

g
a

comcom

xCOM
+

−
=

+

−
=

θ


