Chapter 8 – Conservation of energy

I. Work done on a system by an external force

II. Conservation of mechanical energy

II. External work and thermal energy

III. External forces and internal energy changes

IV. Power
I. Work done on a system by an external force

Work is energy transfer “to” or “from” a system by means of an external force acting on that system.

When more than one force acts on a system their net work is the energy transferred to or from the system.

No Friction: \[W = \Delta E_{\text{mec}} = \Delta K + \Delta U \rightarrow \text{Ext. force} \]

Remember! \[\Delta E_{\text{mec}} = \Delta K + \Delta U = 0 \] only when:
- System isolated.
- No ext. forces act on a system.
- All internal forces are conservative.

Friction:

\[F - f_k = ma \]
\[v^2 = v_0^2 + 2ad \rightarrow a = 0.5(v^2 - v_0^2) / d \]
\[F - f_k = \frac{m}{2d} (v^2 - v_0^2) \Rightarrow Fd - f_k d = \frac{1}{2} m(v^2 - v_0^2) \Rightarrow Fd = \frac{1}{2} mv^2 - \frac{1}{2} mv_0^2 + f_k d \]

\[W = Fd = \Delta K + f_k d \]

General:

\[W = Fd = \Delta E_{mec} + f_k d \]

Example: Block sliding up a ramp.

Thermal energy:

\[\Delta E_{th} = f_k d \]

Friction due to cold welding between two surfaces. As the block slides over the floor, the sliding causes tearing and reforming of the welds between the block and the floor, which makes the block-floor warmer.

Work done on a system by an external force, friction involved

\[W = Fd = \Delta E_{mec} + \Delta E_{th} \]
II. Conservation of energy

Total energy of a system = E mechanical + E thermal + E internal

- The total energy of a system can only change by amounts of energy transferred “from” or “to” the system.

\[W = \Delta E = \Delta E_{mec} + \Delta E_{th} + \Delta E_{int} \] → Experimental law

- The total energy of an isolated system cannot change. (There cannot be energy transfers to or from it).

Isolated system: \[\Delta E_{mec} + \Delta E_{th} + \Delta E_{int} = 0 \]

In an isolated system we can relate the total energy at one instant to the total energy at another instant without considering the energies at intermediate states.
Example: Trolley pole jumper

1) **Run** → Internal energy (muscles) gets transferred into kinetic energy.

2) **Jump/Ascent** → Kinetic energy transferred to potential elastic energy (trolley pole deformation) and to gravitational potential energy.

3) **Descent** → Gravitational potential energy gets transferred into kinetic energy.
III. External forces and internal energy changes

Example: skater pushes herself away from a railing. There is a force F on her from the railing that increases her kinetic energy.

i) One part of an object (skater’s arm) does not move like the rest of body.

ii) Internal energy transfer (from one part of the system to another) via the external force F. Biochemical energy from muscles transferred to kinetic energy of the body.

$$W_{F,ext} = \Delta K = F \cos \varphi d$$

Non-isolated system $\rightarrow \Delta K + \Delta U = W_{F,ext} =Fd \cos \varphi$

$$\Delta E_{mec} = Fd \cos \varphi$$

Change in system’s mechanical energy by an external force
IV. Power

Proof:

\[v^2 = v_0^2 + 2a_x d \quad (0.5M) \]
\[\frac{1}{2} Mv^2 - \frac{1}{2} Mv_0^2 = Ma_x d \]
\[\Delta K = (F \cos \phi) d \]

Average power:

\[P_{\text{avg}} = \frac{\Delta E}{\Delta t} \]

Instantaneous power:

\[P = \frac{dE}{dt} \]
61. In the figure below, a block slides along a path that is without friction until the block reaches the section of length \(L = 0.75 \text{m} \), which begins at height \(h = 2 \text{m} \). In that section, the coefficient of kinetic friction is 0.4. The block passes through point A with a speed of 8m/s. Does it reach point B (where the section of friction ends)? If so, what is the speed there and if not, what greatest height above point A does it reach?

\[
N = mg \cos 30° = 8.5m
\]
\[
f_k = \mu_k N = (0.4)(8.5m) = 3.4m
\]
\[A - C \rightarrow \text{Only conservative forces } \Delta E_{mec} = 0\]
\[\rightarrow K_A + U_A = K_C + U_C\]
\[
\frac{1}{2} mv_A^2 = \frac{1}{2} mv_C^2 + mgh_C \rightarrow v_c = 5m / s
\]

The kinetic energy in C turns into thermal and potential energy \(\rightarrow \) Block stops.

\[K_c = 0.5mv_c^2 = 12.4m\]
\[K_c = mgy + f_k d \rightarrow 12.4m = mg(d \sin 30°) + 3.4md \rightarrow d = 1.49 \text{ meters}\]
\[d > L = 0.75m \rightarrow \text{Block reaches B}\]

Isolated system \(\rightarrow \Delta E = 0 = \Delta E_{mec} + \Delta U + \Delta E_{th} \rightarrow K_C + U_C = K_B + U_B + f_k L\]

\[12.4m = 0.5mv_B^2 + mg(y_B - y_c) + \mu_k mgL \cos 30° = 0.5mv_B^2 + mgL \sin 30° + \mu_k mgL \cos 30°\]
\[12.4m = 0.5mv_B^2 + 3.67m + 2.5m \rightarrow v_B = 3.5m / s\]
129. A massless rigid rod of length L has a ball of mass m attached to one end. The other end is pivoted in such a way that the ball will move in a vertical circle. First, assume that there is no friction at the pivot. The system is launched downward from the horizontal position A with initial speed \(v_0 \). The ball just barely reaches point D and then stops. (a) Derive an expression for \(v_0 \) in terms of L, m and g. (b) What is the tension in the rod when the ball passes through B? (c) A little girl is placed on the pivot to increase the friction there. Then the ball just barely reaches C when launched from A with the same speed as before. What is the decrease in mechanical energy during this motion? (d) What is the decrease in mechanical energy by the time the ball finally comes to rest at B after several oscillations?

(a) \(\Delta E_{mec} = 0 \rightarrow K_f + U_f = K_i + U_i \)

\[K_D = 0; \quad U_A = 0 \]

\[mgL = \frac{1}{2} mv_0^2 \rightarrow v_0 = \sqrt{2gL} \]

(b) \(F_{cent} = ma_c = T - mg \)

\[m \frac{v_B^2}{L} = T - mg \rightarrow T = m \left(\frac{1}{L} v_B^2 + g \right) \]

\[U_A + K_A = U_B + K_B \]

\[\frac{1}{2} mv_0^2 = -mgL + \frac{1}{2} mv_B^2 \rightarrow \]

\[\frac{1}{2} 2gL +gL = \frac{1}{2} v_B^2 \rightarrow v_B = 2\sqrt{gL} \quad T = 5mg \]

(c) \(\Delta E_{th} = f_k d \)

The difference in heights or in gravitational potential energies between the positions C (reached by the ball when there is friction) and D during the frictionless movement is going to be the loss of mechanical energy which goes into thermal energy.

(c) \(\Delta E_{th} = -mgL \)

(d) The difference in height between B and D is 2L. The total loss of mechanical energy (which all goes into thermal energy) is:

\[\Delta E_{mec} = -2mgL \]
101. A 3kg sloth hangs 3m above the ground. (a) What is the gravitational potential energy of the sloth-Earth system if we take the reference point y=0 to be at the ground? If the sloth drops to the ground and air drag on it is assumed to be negligible, what are (b) the kinetic energy and (c) the speed of the sloth just before it reaches the ground?

(a) \(\Delta E_{mec} = 0 \rightarrow K_f + U_f = K_i + U_i \)

\(U_f (\text{ground}) = 0; \ K_i = 0 \)

\(U_i = mgh = (3.2 \text{kg})(9.8 \text{m} / \text{s}^2)(3 \text{m}) = 94.1 \text{J} \)

(b) \(K_f = 94.1 \text{J} \)

(c) \(K_f = \frac{1}{2}mv_f^2 \rightarrow v_f = \sqrt{\frac{2K_f}{m}} = 7.67 \text{m} / \text{s} \)

130. A metal tool is sharpen by being held against the rim of a wheel on a grinding machine by a force of 180N. The frictional forces between the rim and the tool grind small pieces of the tool. The wheel has a radius of 20cm and rotates at 2.5 rev/s. The coefficient of kinetic friction between the wheel and the tool is 0.32. At what rate is energy being transferred from the motor driving the wheel and the tool to the kinetic energy of the material thrown from the tool?

\(v = 2.5 \left(\frac{\text{rev}}{\text{s}} \right) \left(\frac{2\pi(0.2m)}{1\text{rev}} \right) = 3.14 \text{m} / \text{s} \)

\(P = \vec{F} \cdot \vec{v} = (-57.6N)(3.14 \text{m} / \text{s}) = -181 \text{W} \)

\(P_{\text{motor}} = 181 \text{W} \)

\(f_k = \mu_k N = \mu_k F = (0.32)(180N) = 57.6 \text{N} \)

Power dissipated by friction = Power supplied by motor
A block with a kinetic energy of 30J is about to collide with a spring at its relaxed length. As the block compresses the spring, a frictional force between the block and floor acts on the block. The figure below gives the kinetic energy of the block \(K(x)\) and the potential energy of the spring \(U(x)\) as a function of the position \(x\) of the block, as the spring is compressed. What is the increase in thermal energy of the block and the floor when (a) the block reaches position 0.1m and (b) the spring reaches its maximum compression?

Isolated system → \(\Delta E = 0 \rightarrow 0 = \Delta E_{mec} + \Delta E_{th}\)

\[\Delta E_{th} = -\Delta E_{mec}\]

(a) \(x = 0.1m\)
Graph: \(K_f = 20J,\) \(U_f = 3J\)

\[E_{mec,i} = K_i = 30J\]
\[E_{mec,f} = K_f + U_f = 23J\]

\[\Delta E_{mec} = 23J - 30J = -7J \rightarrow \Delta E_{th} = 7J\]

(b) \(x_{\text{max}} \rightarrow v = 0 \rightarrow K = 0 \rightarrow x = 0.21m\)

\[E_{mec,i} = K_i = 30J\]
\[E_{mec,f} = U_f = 14J\]

\[\Delta E_{mec} = 14J - 30J = -16J \rightarrow \Delta E_{th} = 16J\]
B1. A 2kg block is pushed against a spring with spring constant $k=500$ N/m compressing it 20 cm. After the block is released, it travels along a frictionless horizontal surface and a 45º incline plane. What is the maximum height reached by this block?