1. The figure below displays the location of two point charges $(q_1 = -5q \text{ and } q_2 = 2q)$. How far from q_2 and in what direction is there a point in which a third charged particle $(q_3 = +q)$ will be in equilibrium? Express your answer in terms of the distance a between charges q_1 and q_2 .

$$F = \frac{1}{4 + 160} \frac{191.921}{12}$$

$$\frac{1}{72} = \frac{1}{72} + \frac{1}{72}$$

$$\frac{1}{72} = \frac{1}{72} + \frac{1}{72} = \frac{1}{72}$$

$$\frac{1}{72} = \frac{1}{72} = \frac{1}{72$$

2. The figure below shows a plastic rod with a uniformly distributed charge $-\mathbf{Q}$. The rod has been bent in a 120° circular arc of radius \mathbf{r} . Assume a coordinate system as it is shown in the figure, where the axis of symmetry of the rod lies along the x axis and the origin is at the center of curvature P of the rod. In terms of Q and r, what is the electric field \mathbf{E} (magnitude and direction) due to the rod at point P? Hint: use the linear charge density (λ) in your calculations. Also remember: (arc length = angle · radius).

$$\frac{1}{S_{\text{canc}}} = \frac{Q}{\text{Mastic rod}}$$

$$\frac{1}{S_{\text{canc}}} = \frac{Q}{\text{Mastic rod}}$$

$$\frac{1}{S_{\text{canc}}} = \frac{Q}{\text{Mastic rod}}$$

$$\frac{1}{S_{\text{canc}}} = \frac{Q}{\text{Mastic rod}}$$

$$\frac{1}{S_{\text{canc}}} = \frac{Q}{S_{\text{canc}}}$$

$$\frac{1}{S_{\text{canc}}} = \frac{Q_{\text{canc}}}{S_{\text{canc}}}$$

$$\frac{1}{S_{\text{canc}}} = \frac$$

$$A = \frac{Q}{2.1 \text{ Y}}$$

$$S = (2.1 \text{ Pad}) \cdot \text{Y}$$

$$E = \frac{0.82 \, Q}{(4 + 160) \, r^2} \cdot \text{Direction:} + X - Axis$$

3. A conducting sphere of radius 10 cm has an unknown charge. If the electric field 18 cm from the center of the sphere has a magnitude of 4000 N/C and is directed radially inward, what is the net charge on the sphere?

R=0.1m, unknown drange

E=4×103N/C inward

- 4. In the rectangle of the figure below, the sides have lengths of 5 cm and 15 cm, $q_1=-5\mu C$ and $q_2=+2\mu C$. Assume V=0 at infinity. Obtain:
 - (a) Electric potential at A
 - (b) Electric potential at B
 - (c) Work required to move a third charge $q_3 = +3\mu C$ from B to A through a diagonal of the rectangle.

(a)
$$V_A = \frac{1}{4HC_0} \left[\frac{q_1}{r_1} + \frac{q_2}{r_2} \right]$$
 5 cm
$$V_A = (9 \times 10^9 \text{ N/m}^2) \left[\frac{-5 \times 10^6 \text{ C}}{0.15 \text{ m}} + \frac{2 \times 10^6 \text{ C}}{0.05 \text{ m}} \right] = 6 \times 10^4 \text{ V}$$
(b) $V_B = (9 \times 10^9 \text{ N/m}^2) \left[\frac{-5 \times 10^6 \text{ C}}{0.05 \text{ m}} + \frac{2 \times 10^6 \text{ C}}{0.05 \text{ m}} \right] = -78 \times 10^4 \text{ V}$
(c) $V_B = -\Delta U = U_B - U_A = q_3 \circ \left[V_B - V_A \right] = (3 \times 10^6 \text{ C}) \left[-78 \times 10^4 \text{ V} \right] = (3 \times 10^6 \text{ C}) \left[-78 \times 10^4 \text{ V} \right]$

$$V_{B \Rightarrow A} = -2.52 \text{ J} \Rightarrow V_{B \Rightarrow A} = -V_{applied} \Rightarrow +2.52 \text{ J}$$
Whe policial force

(a)
$$6 \times 10^9 \text{ V}$$
 (b) $-78 \times 10^9 \text{ V}$ (c) $W = +2.52 \text{ J}$

- (a) Find the equivalent capacitance for the combination of three capacitors shown.
- (b) If the potential difference applied to the input terminals is V = 11 V, what is the charge on C_1 ?

$$V_{12} = \frac{Q_{12}}{C_{12}} = \frac{23.4 \, \text{MC}}{14.3 \, \text{MF}} = 1.64 \, \text{V} = \frac{\text{V}}{\text{Parello}}$$

$$(a) C_{eq} = 2013 \text{MF}$$