- 1. Two balls approach each other head-on with initial speeds of magnitude $v_{1i} = 3$ m/s and $v_{2i} = 5$ m/s and collide *elastically*. After the collision, ball one, whose mass is $m_1 = 0.3$ kg, remains at rest, while ball 2 bounces back. Assume one dimensional motion.
 - (a) What is the mass of ball 2 (m_2) ? (12.5 points)
 - (b) What is the velocity of m₂ after the collision? (12.5 points)

- 2. Two blocks, m_1 = 1 kg and m_2 = 4 kg are connected by a massless string through a pulley of mass M. The rotational inertia of the pulley is $I = \frac{1}{2} MR^2$, with M = 0.3 kg and a radius R= 0.2 m. Block m_2 is pulled by a horizontal force of 40 N. m_2 lies on a frictionless surface.
 - a) Using symbols, write down the equations of motion of the masses and the pulley. (7 points)
 - b) Obtain the linear acceleration of the masses. (9 points)
 - c) Calculate the forces of tension in the two sides of the pulley. (9 points)

- 3. The system of objects displayed below is rotating in the horizontal plane with respect to a perpendicular axis located 0.2 m away from mass 1. The system is made of two small particles of equal mass $m_1 = m_2 = 0.2$ kg and of one rod of length L = 3 m and mass M = 0.5 kg. The system is rotating with an angular speed of 8 rad/s. [I_{rod} (COM) = $ML^2/12$]
 - (a) Calculate the total moment of inertia of the system with respect to the rotational axis shown in the figure below (12.5 points)
 - (b) Calculate the rotational kinetic energy (12.5 points)

4. Find the net torque on the wheel in the figure below about the axle through O, taking a = 1 m and b = 3 m. The magnitudes of the forces acting on the wheel are: $F_1 = 30$ N, $F_2 = 15$ N, $F_3 = 18$ N (25 points)

