$$
\begin{aligned}
\Delta \overrightarrow{\mathbf{p}} & =\overrightarrow{\mathbf{F}} \Delta t \\
\Delta p_{y} & =m\left(v_{\text {fy }}-v_{i y}\right)=m\left(v \cos 60.0^{\circ}\right)-m v \cos 60.0^{\circ}=0 \\
\Delta p_{x} & =m\left(-v \sin 60.0^{\circ}-v \sin 60.0^{\circ}\right)=-2 m v \sin 60.0^{\circ} \\
& =-2(3.00 \mathrm{~kg})(10.0 \mathrm{~m} / \mathrm{s})(0.866) \\
& =-52.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
F_{\text {avg }} & =\frac{\Delta p_{x}}{\Delta t}=\frac{-52.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{0.200 \mathrm{~s}}=-260 \mathrm{~N}
\end{aligned}
$$

FIG. P9. 9
*P9.11 (a) The impulse is to the right and equal to the area under the F - t graph:

$$
I=[(0+4 \mathrm{~N}) / 2](2 \mathrm{~s}-0)+(4 \mathrm{~N})(3 \mathrm{~s}-2 \mathrm{~s})+(2 \mathrm{~N})(2 \mathrm{~s})=12.0 \mathrm{~N} \cdot \mathrm{~s} \hat{\mathrm{i}}
$$

(b) $m \overrightarrow{\mathrm{v}}_{\mathrm{i}}+\overrightarrow{\mathrm{F}} t=m \overrightarrow{\mathrm{v}}_{f} \quad(2.5 \mathrm{~kg})(0)+12 \hat{\mathrm{i}} \mathrm{N} \cdot \mathrm{s}=(2.5 \mathrm{~kg}) \overrightarrow{\mathbf{v}}_{f} \quad \overrightarrow{\mathbf{v}}_{f}=4.80 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$
(c) From the same equation, $(2.5 \mathrm{~kg})(-2 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s})+12 \hat{\mathrm{i}} \mathrm{N} \cdot \mathrm{s}=(2.5 \mathrm{~kg}) \overrightarrow{\mathrm{v}}_{f} \quad \overrightarrow{\mathbf{v}}_{f}=2.80 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$
(d) $\overrightarrow{\mathrm{F}}_{\text {avg }} \Delta t=12.0 \hat{\mathrm{i}} \mathrm{N} \cdot \mathrm{s}=\overline{\mathrm{F}}_{\text {avg }}(5 \mathrm{~s}) \quad \overrightarrow{\mathrm{F}}_{\text {avg }}=2.40 \hat{\mathrm{i}} \mathrm{N}$

P9.19 First we find v_{1}, the speed of m_{1} at B before collision.
$\frac{1}{2} m_{1} v_{1}^{2}=m_{1} g h$
$v_{1}=\sqrt{2(9.80)(5.00)}=9.90 \mathrm{~m} / \mathrm{s}$
Now we use the text's analysis of one-dimensional elastic collisions to find $v_{1 f}$, the speed of m_{1} at B just

FIG. P9. 19 after collision.
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1}=-\frac{1}{3}(9.90) \mathrm{m} / \mathrm{s}=-3.30 \mathrm{~m} / \mathrm{s}$
Now the $5-\mathrm{kg}$ block bounces back up to its highest point after collision according to
$m_{1} g h_{\text {max }}=\frac{1}{2} m_{1}(-3.30)^{2} \quad h_{\max }=\frac{(-3.30 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.556 \mathrm{~m}$

P9.29 $p_{x f}=p_{x i}$
$m v_{0} \cos 37.0^{\circ}+m v_{Y} \cos 53.0^{\circ}$

$$
=m(5.00 \mathrm{~m} / \mathrm{s})
$$

$0.799 v_{\mathrm{O}}+0.602 v_{Y}=5.00 \mathrm{~m} / \mathrm{s}$
(1)
$p_{y f}=p_{y i}$
$m v_{0} \sin 37.0^{\circ}-m v_{\mathrm{Y}} \sin 53.0^{\circ}=0$
$0.602 v_{0}=0.799 v_{Y}$
(2)

Solving (1) and (2) simultaneously,

before

$$
v_{\mathrm{O}}=3.99 \mathrm{~m} / \mathrm{s} \text { and } v_{\mathrm{Y}}=3.01 \mathrm{~m} / \mathrm{s}
$$

FIG. P9. 29

The x-coordinate of the center of mass is

$$
x_{\mathrm{CM}}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{0+0+0+0}{(2.00 \mathrm{~kg}+3.00 \mathrm{~kg}+2.50 \mathrm{~kg}+4.00 \mathrm{~kg})}
$$

$$
x_{\mathrm{CM}}=0
$$

and the y-coordinate of the center of mass is

$$
\begin{aligned}
& y_{\mathrm{CM}}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}=\frac{(2.00 \mathrm{~kg})(3.00 \mathrm{~m})+(3.00 \mathrm{~kg})(2.50 \mathrm{~m})+(2.50 \mathrm{~kg})(0)+(4.00 \mathrm{~kg})(-0.500 \mathrm{~m})}{2.00 \mathrm{~kg}+3.00 \mathrm{~kg}+2.50 \mathrm{~kg}+4.00 \mathrm{~kg}} \\
& y_{\mathrm{CM}}=1.00 \mathrm{~m}
\end{aligned}
$$

P9.67
(a) Find the speed when the bullet emerges from the block by using momentum conservation:

$$
m v_{i}=M V_{i}+m v
$$

The block moves a distance of 5.00 cm . Assume for an approximation that the block quickly reaches its maximum velocity, V_{i}, and the bullet kept going with a constant velocity, v. The block then compresses the spring and stops.

FIG. P9. 67

$$
\begin{aligned}
& \frac{1}{2} M V_{i}^{2}=\frac{1}{2} k x^{2} \\
& V_{i}=\sqrt{\frac{(900 \mathrm{~N} / \mathrm{m})\left(5.00 \times 10^{-2} \mathrm{~m}\right)^{2}}{1.00 \mathrm{~kg}}}=1.50 \mathrm{~m} / \mathrm{s} \\
& v=\frac{m v_{i}-M V_{i}}{m}=\frac{\left(5.00 \times 10^{-3} \mathrm{~kg}\right)(400 \mathrm{~m} / \mathrm{s})-(1.00 \mathrm{~kg})(1.50 \mathrm{~m} / \mathrm{s})}{5.00 \times 10^{-3} \mathrm{~kg}} \\
& v=100 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) $\quad \Delta E=\Delta K+\Delta U=\frac{1}{2}\left(5.00 \times 10^{-3} \mathrm{~kg}\right)(100 \mathrm{~m} / \mathrm{s})^{2}-\frac{1}{2}\left(5.00 \times 10^{-3} \mathrm{~kg}\right)(400 \mathrm{~m} / \mathrm{s})^{2}$

$$
+\frac{1}{2}(900 \mathrm{~N} / \mathrm{m})\left(5.00 \times 10^{-2} \mathrm{~m}\right)^{2}
$$

$\Delta E=-374 \mathrm{~J}$, or there is a mechanical energy loss of 374 J .

