Chapter 31 - Alternating Current

- Phasors and Alternating Currents
- Resistance and Reactance
- Magnetic-Field Energy
- The L-R-C Series Circuit
- Power in Alternating-Current Circuits
- Resonance in Alternating-Current Circuits
- Transformers

1. Phasors and Alternating Currents

Ex. source of ac: coil of wire rotating with constant ω in a magnetic field \rightarrow sinusoidal alternating emf.

$$
v=V \cos \omega t
$$

$$
i=I \cos \omega t
$$

$\mathrm{v}, \mathrm{i}=$ instantaneous potential difference / current.
$\mathrm{V}, \mathrm{I}=$ maximum potential difference / current \rightarrow voltage/current amplitude.

Phasor Diagrams

- Represent sinusoidally varying voltages / currents through the projection of a vector, with length equal to the amplitude, onto a horizontal axis.
- Phasor: vector that rotates counterclockwise with constant ω.
- Diode (rectifier): device that conducts better in one direction than in the other. If ideal, $R=0$ in one direction and $R=\infty$ in other.

Rectified average current $\left(I_{\text {rav }}\right)$: during any whole number of cycles, the total charge that flows is same as if current were constant ($\left.l_{\text {rav }}\right)$.

$$
i_{\text {rav }}=\frac{2}{\pi} I
$$

average value of Icos ω tl or Isin ωt
full wave rectifier circuit

Root-Mean Square (rms) values:

$$
i_{r m s}=\sqrt{\left(i^{2}\right)_{a v}}=\frac{I}{\sqrt{2}}
$$

$$
V_{r m s}=\frac{V}{\sqrt{2}}
$$

Meaning of the rms value of a sinusoidal quantity (here, ac current with $I=3 \mathrm{~A}$):
(1) Graph current i versus time.
(2) Square the instantaneous current i.
(3) Take the average (mean) value of i^{2}.
(4) Take the square root of that average.

$$
\begin{aligned}
& i^{2}=I^{2} \cos ^{2} \omega t \\
& \cos ^{2} \omega t=0.5 \cdot(1+\cos 2 \omega t) \\
& i^{2}=0.5 I^{2}+0.5 I^{2} \cos (2 \omega t)
\end{aligned}
$$

2. Resistance and Reactance

Resistor in an ac circuit

$$
v_{R}=i R=(I R) \cos \omega t=V_{R} \cos \omega t
$$

$V_{R}=I R$ (amplitude-max- of voltage across R)

- Current in phase with voltage \rightarrow phasors rotate together

Inductor in an ac Circuit

- Current varies with time \rightarrow self-induced emf \rightarrow $\mathrm{di} / \mathrm{dt}>0 \rightarrow \varepsilon<0$

$$
\begin{aligned}
& \varepsilon=-L \frac{d i}{d t} \\
& \mathrm{~V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{b}} \rightarrow \mathrm{~V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt}>0
\end{aligned}
$$

$v_{L}=-I \omega L \sin \omega t=I \omega L \cos \left(\omega t+90^{\circ}\right)$

$$
v_{L}=L \frac{d i}{d t}=L \frac{d}{d t}(I \cos \omega t)
$$

$$
v_{L}=-I \omega L \sin \omega t=I \omega L \cos \left(\omega t+90^{\circ}\right)
$$

Voltage curve leads current curve by a quarter-
v_{L} has 90° "head start" with respect to i . cycle (corresponding to $\phi=\pi / 2 \mathrm{rad}=90^{\circ}$).

Inductor in an ac circuit

$i=I \cos \omega t$
$v_{L}=\frac{I \omega L \cos \left(\omega t+90^{\circ}\right)}{\mathrm{V}_{\mathrm{L}}}$
$\nu=V \cos (\omega t+\varphi)$

Voltage phasor leads current phasor by $\phi=\pi / 2 \mathrm{rad}=90^{\circ}$.
$\varphi=$ phase angle $=$ phase of voltage relative to current

Pure resistor: $\quad \varphi=0$
Pure inductor: $\varphi=90^{\circ}$

Inductive reactance: $X_{L}=\omega L$

$$
I=\frac{V_{L}}{\omega L} \quad \begin{aligned}
& \text { High } \omega \rightarrow \text { low I } \\
& \text { Low } \omega \rightarrow \text { high I }
\end{aligned}
$$

Inductors used to block high ω

Capacitor in an ac circuit

As the capacitor charges and discharges \rightarrow at each t, there is "i" in each plate, and equal displacement current between the plates, as though charge was conducted through C .

$$
i=\frac{d q}{d t}=I \cos \omega t \quad \rightarrow \int d q=\int I \cos \omega t d t
$$

$q=\frac{I}{\omega} \sin \omega t$

$$
v_{c}=\frac{q}{C}=\frac{I}{\omega C} \sin \omega t=\frac{I}{\omega C} \cos \left(\omega t-90^{\circ}\right)
$$

$$
V_{C}=\frac{I}{\omega C}
$$

Pure capacitor: $\varphi=90^{\circ}$

Voltage curve lags current curve by a quartercycle (corresponding to $\phi=\pi / 2 \mathrm{rad}=90^{\circ}$).
v_{c} lags current by 90°.

Capacitive reactance: $\quad X_{C}=\frac{1}{\omega C}$

$$
V_{C}=I X_{C} \quad \text { (amplitude of voltage across } \mathrm{C} \text {) }
$$

$$
I=V_{C} \omega C \quad \begin{aligned}
& \text { High } \omega \rightarrow \text { high I } \\
& \text { Low } \omega \rightarrow \text { low } I
\end{aligned}
$$

Capacitor in an ac circuit

Capacitors used to block low ω (or low f)
\rightarrow high-pass filter

Comparing ac circuit elements:

- R is independent of ω.
- X_{L} and X_{C} depend on ω.
- If $\omega=0$ (dc circuit) $\rightarrow X_{c}=1 / \omega C \rightarrow \infty$

$$
\rightarrow \mathrm{i}_{\mathrm{c}}=0
$$

$X_{L}=\omega L=0$

- If $\omega \rightarrow \infty, X_{L} \rightarrow \infty \rightarrow i_{L}=0$
$\mathrm{X}_{\mathrm{C}}=0 \rightarrow \mathrm{~V}_{\mathrm{C}}=0 \rightarrow$ current changes direction so rapidly that no charge can build up on each plate.

Circuit Element	Amplitude Relationship	Circuit Quantity	Phase of \boldsymbol{v}
Resistor	$V_{R}=I R$	R	In phase with i
Inductor	$V_{L}=I X_{L}$	$X_{L}=\omega L$	Leads i by 90°
Capacitor	$V_{C}=I X_{C}$	$X_{C}=1 / \omega C$	Lags i by 90°

Example: amplifier \rightarrow C in tweeter branch blocks low-f components of sound

 but passes high-f; L in woofer branch does the opposite.A crossover network in a loudspeaker system

Graphs of rms current as functions of frequency for a given amplifier voltage

3. The L-R-C Series Circuit

- Instantaneous v across $L, C, R=v_{\mathrm{ad}}=v$ source
- Total voltage phasor = vector sum of phasors of individual voltages.

$-\mathrm{C}, \mathrm{R}, \mathrm{L}$ in series \rightarrow same current, $\mathrm{i}=\mathrm{I} \cos \omega t \rightarrow$ only one phasor (I) for three circuit elements, amplitude I.
- The projections of I and V phasors onto horizontal axis at t give rise to instantaneous i and v.

$$
\begin{aligned}
& V_{C}=I R \\
& V_{L}=I X_{L} \\
& V_{C}=I X_{C}
\end{aligned}
$$

(amplitudes = maximum values)

Source voltage phasor is the vector sum of the V_{R}, V_{L}, and V_{C} phasors.

-The instantaneous potential difference between terminals a,d = $=$ algebraic sum of $\mathrm{v}_{\mathrm{R}}, \mathrm{v}_{\mathrm{C}}, \mathrm{v}_{\mathrm{L}}$ (instantaneous voltages) $=$
= sum of projections of phasors $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{L}}$
$=$ projection of their vector sum (V) that represents the source voltage v and instantaneous voltage v_{ad} across series of elements.

$$
V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{c}\right)^{2}}=\sqrt{(I R)^{2}+\left(I X_{L}-I X_{c}\right)^{2}}=I \sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}
$$

Impedance: $Z=\sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}$

$$
V=I Z
$$

$$
Z=\sqrt{R^{2}+[\omega L-(1 / \omega C)]^{2}}
$$

Impedance of R-L-C series circuit

$$
\tan \varphi=\frac{V_{L}-V_{C}}{V_{R}}=\frac{I\left(X_{L}-X_{C}\right)}{I R}=\frac{X_{L}-X_{C}}{R}
$$

Phase angle of the source voltage with respect to current

$$
\tan \varphi=\frac{\omega L-1 / \omega C}{R}
$$

$$
i=I \cos \omega t
$$

$$
v=V \cos (\omega t+\varphi)
$$

$$
V_{r m s}=I_{r m s} Z
$$

$$
\frac{V}{\sqrt{2}}=\frac{I}{\sqrt{2}} Z
$$

Example 31.5

KEY: $v-v_{R}-v_{L}-v_{C}$

4. Power in Alternating-Current Circuits

$$
\begin{aligned}
P & =\frac{1}{2} V I \\
P_{a v} & =\frac{V}{\sqrt{2}} \frac{I}{\sqrt{2}}=V_{r m s} I_{r m s}=I_{r m s}{ }^{2} R=\frac{V_{r m s}{ }^{2}}{R}
\end{aligned}
$$

(a) Pure resistor

For a resistor, $p=v i$ is always positive because v and i are either both positive or both negative at any instant.

KEY: Instantaneous current, i
(b) Pure inductor
(c) Pure capacitor

For an inductor or capacitor, $p=v i$ is alternately positive and negative, and the average power is zero.

(d) Arbitrary ac circuit

For an arbitrary combination of resistors, inductors, and capacitors, the average power is positive.

Instantaneous power input to device, p

Power in a General Circuit

$P=v i=[V \cos (\omega t+\varphi)][I \cos \omega t]=[V(\cos \omega t \cos \varphi-\sin \omega t \sin \varphi)][I \cos \omega t]$
$=V I \cos \varphi \cos ^{2} \omega t-V I \sin \varphi \cos \omega t \sin \omega t$

$$
P_{a v}=\frac{1}{2} V I \cos \varphi=V_{r m s} I_{r m s} \cos \varphi
$$

5. Resonance in Alternating-Current Circuits

$X_{L}=X_{C} \quad \omega_{0} L=\frac{1}{\omega_{0} C} \quad \omega_{0}=\frac{1}{\sqrt{L C}}$

Reactance, resistance, and impedance as functions of angular frequency

Impedance, current, and phase angle as functions of angular frequency

6. Transformers

$$
\begin{gathered}
\varepsilon_{1}=-N_{1} \frac{d \Phi_{B}}{d t} \quad \varepsilon_{2}=-N_{2} \frac{d \Phi_{B}}{d t} \\
\frac{\varepsilon_{2}}{\varepsilon_{1}}=\frac{N_{2}}{N_{1}}
\end{gathered}
$$

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

$$
\frac{V_{2}}{I_{1}}=\frac{R}{\left(N_{2} / N_{1}\right)}
$$

The induced emf per turn is the same in both coils, so we adjust the ratio of terminal voltages by adjusting the ratio of turns:

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

Schematic transformer

Large eddy currents in solid core

Smaller eddy currents in laminated core

