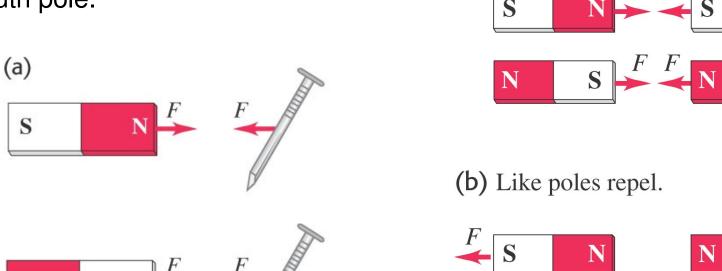
Chapter 27 – Magnetic Field and Magnetic Forces

- Magnetism
- Magnetic Field
- Magnetic Field Lines and Magnetic Flux
- Motion of Charged Particles in a Magnetic Field
- Applications of Motion of Charged Particles
- Magnetic Force on a Current-Carrying Conductor
- Force and Torque on a Current Loop

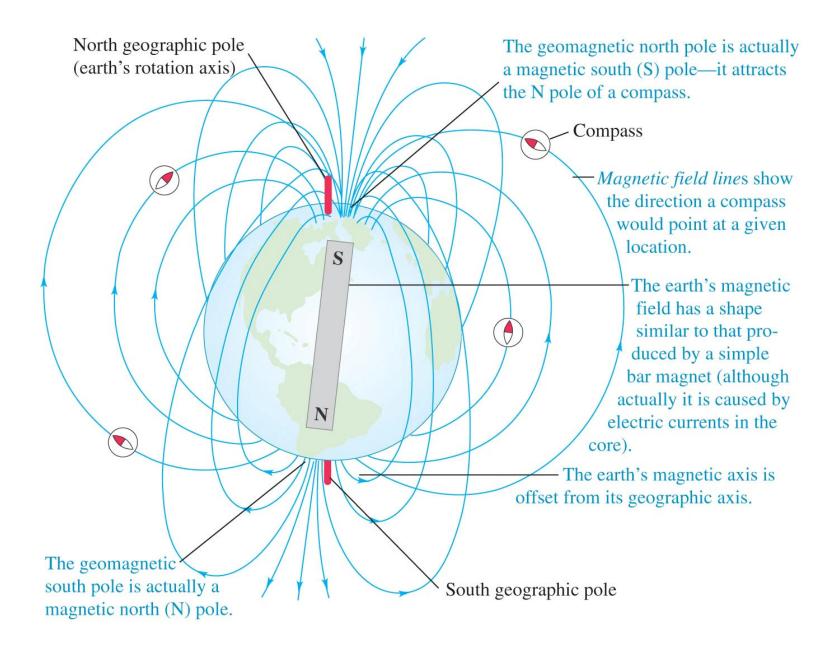
- 1) A moving charge or collection of moving charges (e.g. electric current) produces a magnetic field. (Chap. 28).
- 2) A second current or charge responds to the magnetic field and experiences a magnetic force. (Chap. 27).

1. Magnetism

Permanent magnets: exert forces on each other as well as on unmagnetized Fe pieces.


- The needle of a compass is a piece of magnetized Fe.
- If a bar-shaped permanent magnet is free to rotate, one end points north (north pole of magnet).
- An object that contains Fe is not by itself magnetized, it can be attracted by either the north or south pole of permanent magnet.
- A bar magnet sets up a magnetic field in the space around it and a second body responds to that field. A compass needle tends to align with the magnetic field at the needle's position.

1. Magnetism

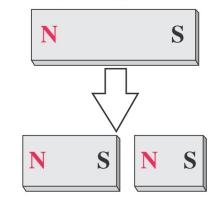

- Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines.
- Magnetic north and south pole's behavior is not unlike electric charges. For magnets, like poles repel and opposite poles attract.

(a) Opposite poles attract.

- A permanent magnet will attract a metal like iron with either the north or south pole.

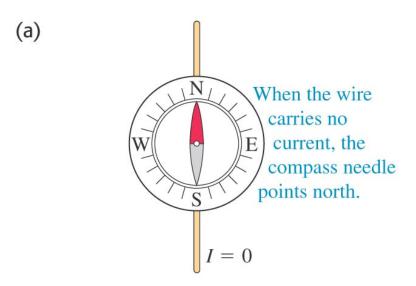
Magnetic poles about our planet

Magnetic declination / magnetic variation: the Earth's magnetic axis is not parallel to its geographic axis (axis of rotation) → a compass reading deviates from geographic north.

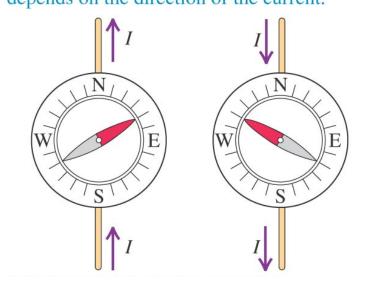

Magnetic inclination: the magnetic field is not horizontal at most of earth's surface, its angle up or down. The magnetic field is vertical at magnetic poles.

Magnetic Poles versus Electric Charge

- We observed monopoles in electricity. A (+) or (-) alone was stable, and field lines could be drawn around it.
- Magnets cannot exist as monopoles. If you break a bar magnet between N and S poles, you get two smaller magnets, each with its own N and S pole.


In contrast to electric charges, magnetic poles always come in pairs and can't be isolated.

Breaking a magnet in two ...



... yields two magnets, not two isolated poles.

- -In 1820, Oersted ran experiments with conducting wires run near a sensitive compass. The orientation of the wire and the direction of the flow both moved the compass needle.
- Ampere / Faraday / Henry → moving a magnet near a conducting loop can induce a current.
- The magnetic forces between two bodies are due to the interaction between moving electrons in the atoms.
- Inside a magnetized body (permanent magnet) there is a <u>coordinated motion</u> <u>of certain atomic electrons</u>. Not true for unmagnetized objects.

(b)
When the wire carries a current, the compass needle deflects. The direction of deflection depends on the direction of the current.

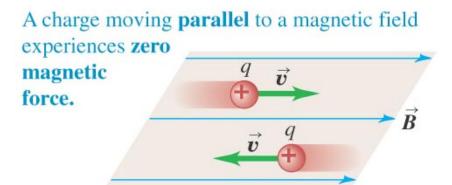
2. Magnetic Field

Electric field:

- 1) A distribution of electric charge at rest creates an electric field E in the surrounding space.
- 2) The electric field exerts a force $\vec{F}_E = \vec{q} \vec{E}$ on any other charges in presence of that field.

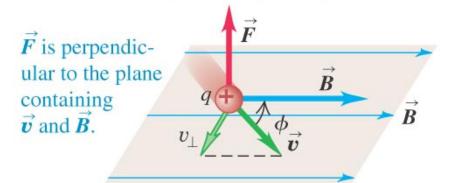
Magnetic field:

- 1) A moving charge or <u>current</u> creates a magnetic field in the surrounding space (in addition to E).
- 2) The magnetic field exerts a force $\overrightarrow{F_m}$ on any other moving charge or current present in that field.
- The magnetic field is a vector field → vector quantity associated with each point in space.

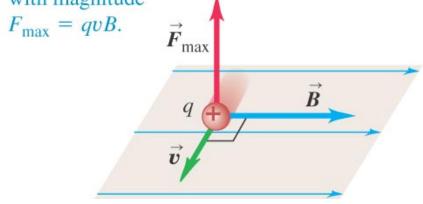

$$F_m = |q| v_{\perp} B = |q| v B \sin \varphi$$

$$\vec{F}_m = q\vec{v} \times \vec{B}$$

- \overrightarrow{F}_m is always perpendicular to \overrightarrow{B} and \overrightarrow{v} .


2. Magnetic Field

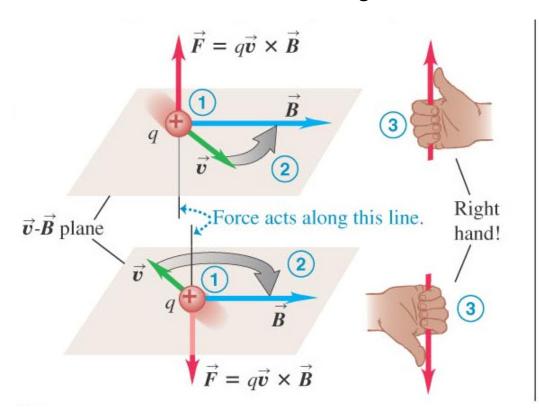
- The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity of the charge is perpendicular to the magnetic field.

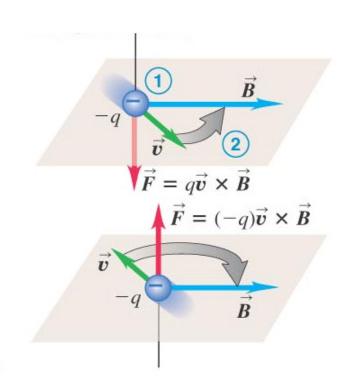


Interaction of magnetic force and charge

A charge moving at an angle ϕ to a magnetic field experiences a magnetic force with magnitude $F = |q|v_{\perp}B = |q|vB \sin \phi$.

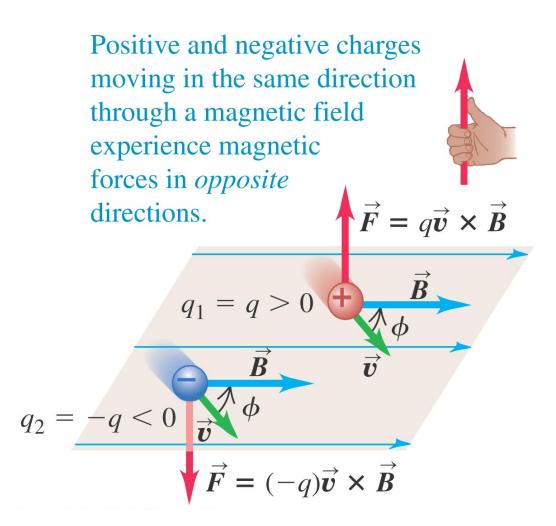
A charge moving **perpendicular** to a magnetic field experiences a maximal magnetic force with magnitude




Right Hand Rule

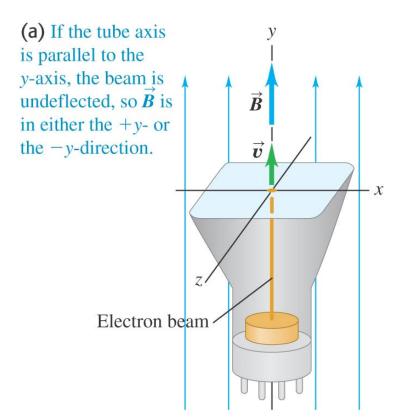
Positive charge moving in magnetic field

→ direction of force follows right hand rule

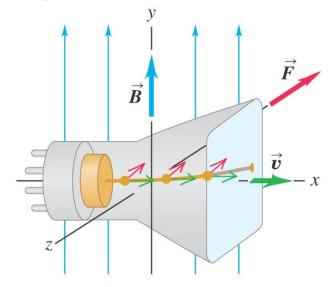

Negative charge → F direction contrary to right hand rule.

$$F = |q|vB_{\perp}$$
 Units: 1 Tesla = 1 N s / C m = 1 N/A m 1 Gauss = 10^{-4} T

Right Hand Rule


If charged particle moves in region where both, E and B are present:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$


Measuring Magnetic Fields with Test Charges

Ex: electron beam in a cathode X-ray tube.

- In general, if a magnetic field (B) is present, the electron beam is deflected. However this is not true if the beam is // to B ($\phi = 0$, $\pi \rightarrow F=0 \rightarrow$ no deflection).

(b) If the tube axis is parallel to the x-axis, the beam is deflected in the -z-direction, so \vec{B} is in the +y-direction.

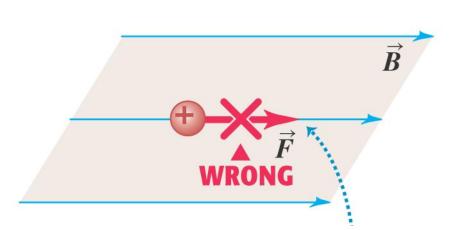
Electron q< 0 → F has contrary direction to right hand rule

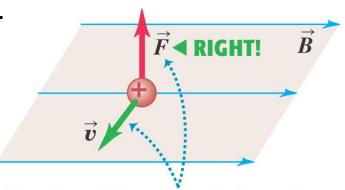
No deflection $\rightarrow \overrightarrow{F} = 0 \rightarrow \overrightarrow{v} /\!/ \overrightarrow{B}$

Deflection $\rightarrow \vec{F} \neq 0 \rightarrow \vec{F} \perp \vec{v}, \vec{B}$

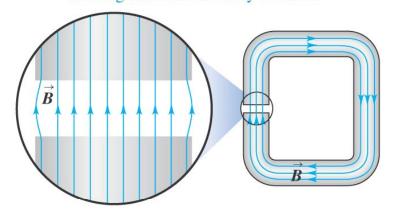
3. Magnetic Field Lines and Magnetic Flux

- Magnetic field lines may be traced from N toward S (analogous to the electric field lines).

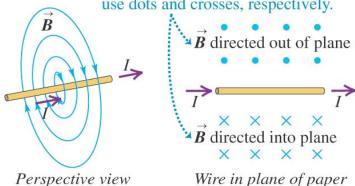

- At each point they are tangent to magnetic field vector.


- The more densely packed the field lines, the stronger the field at a point.

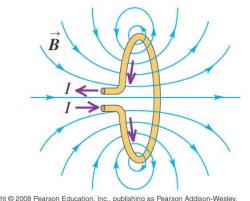
- Magnetic field lines are not "lines of force".

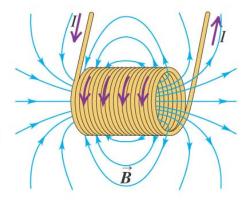


The direction of the magnetic force depends on the velocity \vec{v} , as expressed by the magnetic force law $\vec{F} = q\vec{v} \times \vec{B}$.


- Magnetic field lines have no ends → they continue through the interior of the magnet.
 - (a) Magnetic field of a C-shaped magnet

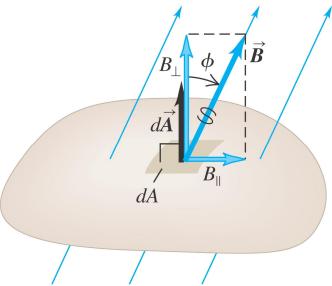
(b) Magnetic field of a straight current-carrying wire


Between flat, parallel magnetic poles, the magnetic field is nearly uniform.


To represent a field coming out of or going into the plane of the paper, we use dots and crosses, respectively.

(c) Magnetic fields of a current-carrying loop and a current-carrying coil (solenoid)

Notice that the field of the loop and, especially, that of the coil look like the field of a bar magnet (see Fig. 27.11).



Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Magnetic Flux and Gauss's Law for Magnetism

$$\Phi_B = \int B_{\perp} dA = \int B \cos \varphi \cdot dA = \int \vec{B} \cdot d\vec{A}$$

- Magnetic flux is a scalar quantity.
- If \overrightarrow{B} is uniform: $\Phi_B = B_{\perp}A = BA\cos\varphi$

<u>Units</u>: 1 Weber (1 Wb = 1 T m^2 = 1 N m / A)

- Difference with respect to electric flux → the total magnetic flux through a closed surface is always zero. This is because there is no isolated magnetic charge ("monopole") that can be enclosed by the Gaussian surface.

$$\Phi_B = \oint \vec{B} \cdot d\vec{A} = 0$$

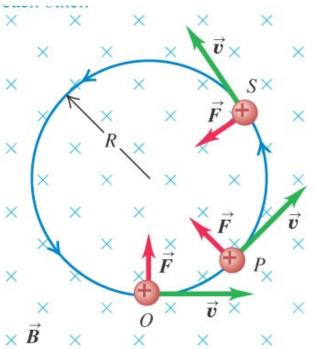
- The magnetic field is equal to the flux per unit area across an area at right angles to the magnetic field = magnetic flux density.

4. Motion of Charged Particles in a Magnetic Field

- Magnetic force perpendicular to $\overrightarrow{v} \rightarrow$ it cannot change the magnitude of the velocity, only its direction.

$$\vec{F}_m = q\vec{v} \times \vec{B}$$

→

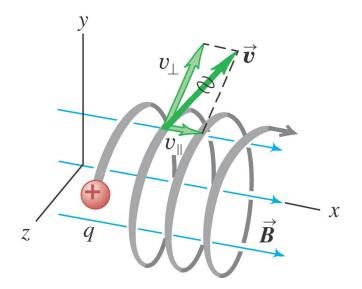

- F does not have a component parallel to particle's motion → cannot do work.
- Motion of a charged particle under the action of a magnetic field alone is always motion with constant speed.
- Magnitudes of F and v are constant (v perp. B) → uniform circular motion.

$$F = |q| \cdot v \cdot B = m \frac{v^2}{R}$$

Radius of circular orbit in magnetic field:

$$R = \frac{mv}{|q|B}$$

- + particle → counter-clockwise rotation.
- particle → clockwise rotation.



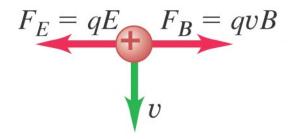
Angular speed:
$$\omega = v/R \rightarrow \omega = v \frac{|q|B}{mv} = \frac{|q|B}{m}$$

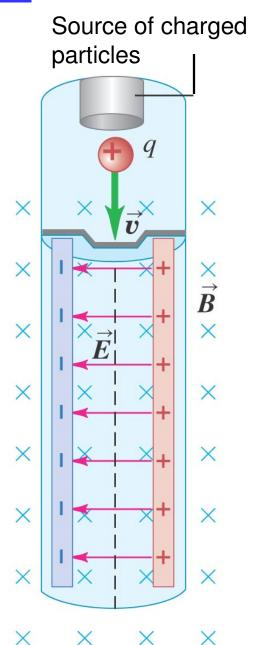
Cyclotron frequency: $f = \omega/2\pi$

- If v is not perpendicular to B \rightarrow v_{//} (parallel to B) constant because F_{//} = 0 \rightarrow particle moves in a helix. (R same as before, with v = v_{\(\perp}\)).}

This particle's motion has components both parallel (v_{\parallel}) and perpendicular (v_{\perp}) to the magnetic field, so it moves in a helical path.

A charged particle will move in a plane perpendicular to the magnetic field.

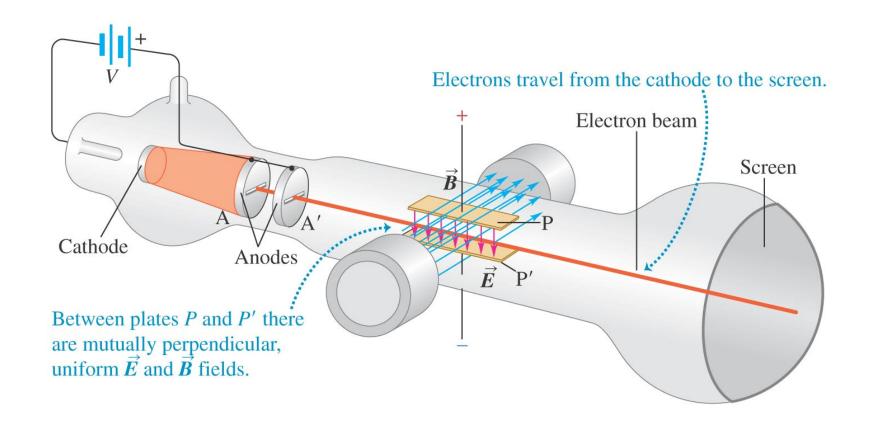

5. Applications of Motion of Charged Particles


Velocity selector

- Particles of a specific speed can be selected from the beam using an arrangement of E and B fields.
- F_m (magnetic) for + charge towards right (q v B).
- F_E (electric) for + charge to left (q E).

-
$$F_{net} = 0$$
 if $F_m = F_E \rightarrow -qE + q \vee B = 0 \rightarrow v = E/B$

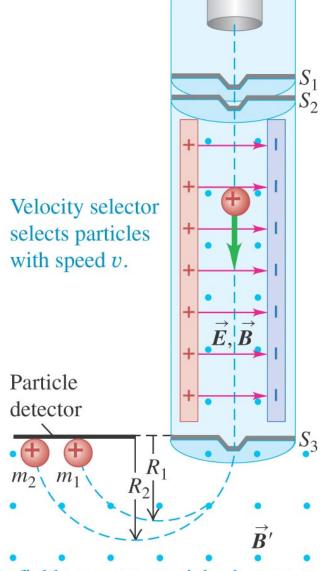
- Only particles with speed E/B can pass through without being deflected by the fields.


Thomson's *e/m* Experiment

$$\Delta E = \Delta K + \Delta U = 0 \rightarrow 0.5 \text{ m } v^2 = U = e \text{ V}$$

$$v = \frac{E}{B} = \sqrt{\frac{2eV}{m}}$$

$$\frac{e}{m} = \frac{E^2}{2VB^2}$$


e/m does not depend on the cathode material or residual gas on tube \rightarrow particles in the beam (electrons) are a common constituent of all matter.

Mass Spectrometer

- Using the same concept as Thompson, Bainbridge was able to construct a device that would only allow one mass in flight to reach the detector.
- Velocity selector filters particles with v = E/B. After this, in the region of B' particles with $m_2 > m_1$ travel with radius $(R_2 > R_1)$.

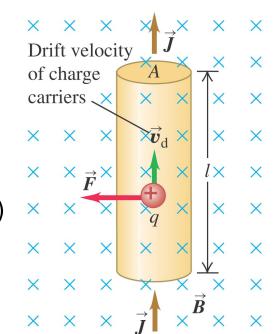
$$R = \frac{mv}{|q|B'}$$

Magnetic field separates particles by mass; the greater a particle's mass, the larger is the radius of its path.

6. Magnetic Force on a Current-Carrying Conductor

$$\vec{F}_m = q\vec{v}_d \times \vec{B}$$

$$F_m = q v_d B$$


 $F_m = q v_d B$ Force on one charge

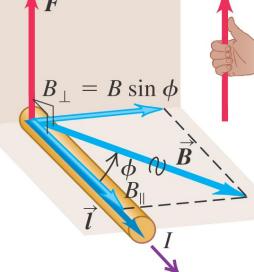
- Total force:

$$F_m = (nAl)(qv_d B)$$

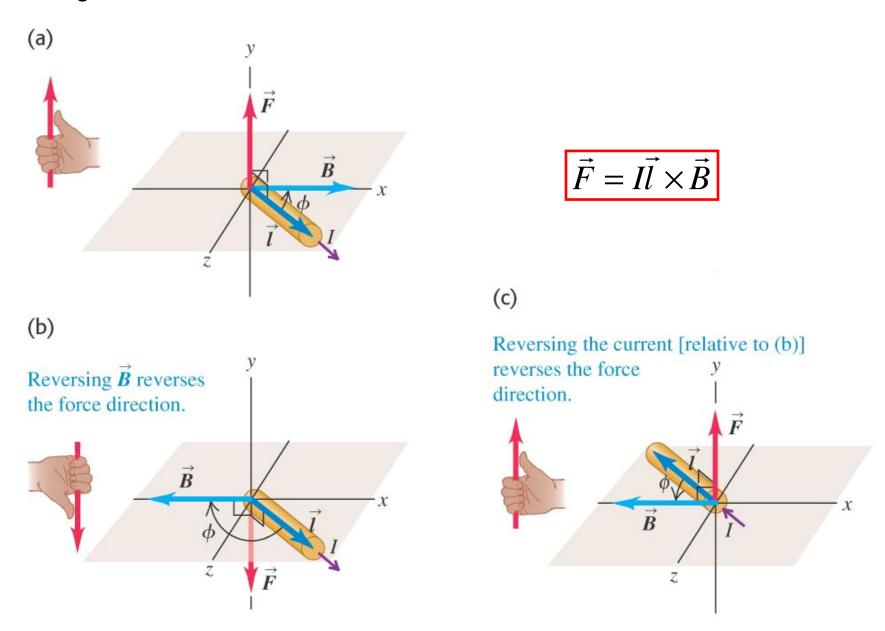
n = number of charges per unit volume A l = volume

$$F_m = (nqv_d)(A)(lB) = (JA)(lB) = IlB$$
 (B \(\preceq\) wire)

In general:


$$F = IlB_{\perp} = IlB\sin\varphi$$

Magnetic force on a straight wire segment:


$$\vec{F} = I\vec{l} \times \vec{B}$$

Magnetic force on an infinitesimal wire section:

$$d\vec{F} = Id\vec{l} \times \vec{B}$$

- Current is not a vector. The direction of the current flow is given by \overrightarrow{dl} , not I. \overrightarrow{dl} is tangent to the conductor.

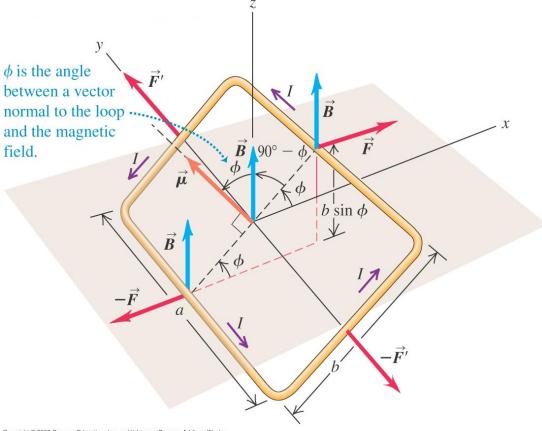
7. Force and Torque on a Current Loop

- The net force on a current loop in a uniform magnetic field is zero.

Right wire of length "a" \rightarrow F = I a B (B $\perp l$)

Left wire of length "b" \rightarrow F' = I b B sin (90° - ϕ) (B forms 90° - ϕ angle with l) F' = I b B cos ϕ

$$F_{net} = F - F + F' - F' = 0$$

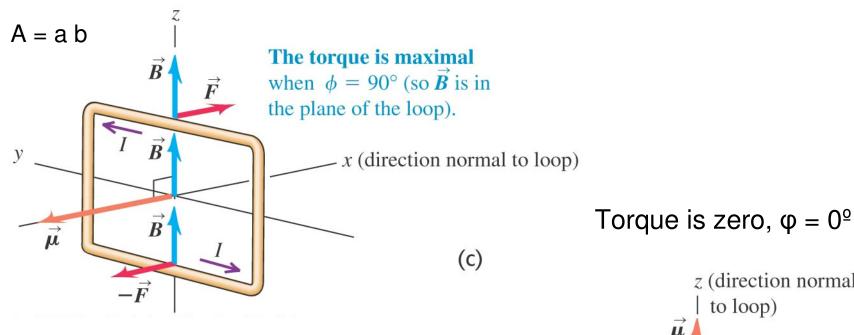

- Net torque ≠ 0 (general).

$$\vec{\tau} = \vec{r} \times \vec{F}$$

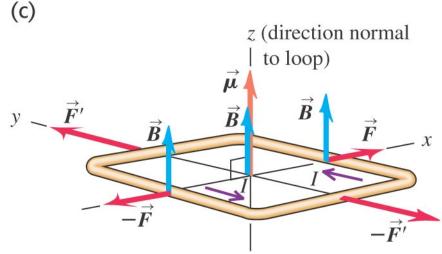
$$\tau = r \cdot F \sin \alpha = r \cdot F = rF$$

$$\tau_{F'} = r \cdot F \sin 0^{\circ} = 0$$

$$\tau_F = F(b/2)\sin\varphi$$



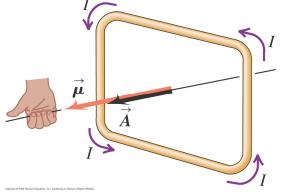
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley


$$\tau_{total} = \tau_{F'} + \tau_{-F'} + \tau_{F} + \tau_{-F} = 0 + 0 + 2(b/2)F \sin \varphi$$

$$\tau_{total} = (IBa)(b\sin\varphi) = IBA\sin\varphi$$

Torque on a current loop

 ϕ is angle between a vector perpendicular to loop and \overrightarrow{B}



$$\tau_{total} = IBA\sin\varphi$$

Magnetic dipole moment:

$$\vec{\mu} = I\vec{A}$$

Direction: perpendicular to plane of loop (direction of loop's vector area → right hand rule)

$$\tau_{total} = \mu B \sin \varphi$$

Magnetic torque:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

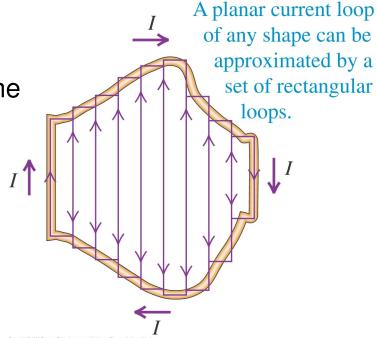
Potential Energy for a Magnetic Dipole:

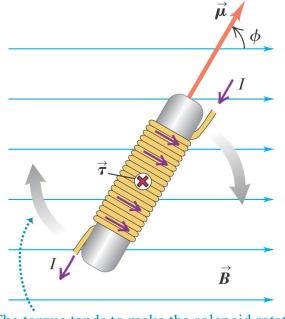
$$U = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \varphi$$

Electric dipole moment:

$$\overline{p} = q\vec{d}$$

Electric torque:


$$\vec{\tau} = \vec{p} \times \vec{E}$$


Potential Energy for an Electric Dipole:

$$U = -\vec{p} \cdot \vec{E}$$

Magnetic Torque: Loops and Coils

If these loops all carry equal current "I" in same clockwise sense, F and torque on the sides of two adjacent loops cancel, and only forces and torques around boundary $\neq 0$.

The torque tends to make the solenoid rotate clockwise in the plane of the page, aligning magnetic moment $\vec{\mu}$ with field \vec{B} .

Solenoid

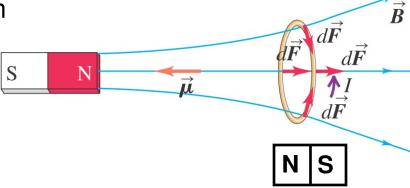
$$\tau = NIBA \sin \varphi$$

N = number of turns

φ is angle between axis of solenoid and B

Max. torque: solenoid axis \perp B.

Torque rotates solenoid to position where its axis is parallel to B.


Magnetic Dipole in a Non-Uniform Magnetic Field

- Net force on a current loop in a non-uniform field is not zero.

 $d\vec{F} = Id\vec{l} \times \vec{B}$

(a) Net force on this coil is away from north pole of magnet.

Radial force components cancel each Other \rightarrow F_{net} to right.

If polarity of magnet changes \rightarrow F_{net} to left.

(b) Net force on same coil is toward south pole of magnet.

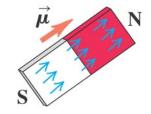
N S $d\vec{F}$ $d\vec{F}$ $d\vec{F}$ Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

N S

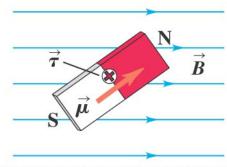
Magnetic Dipole and How Magnets Work


A solenoid and a magnet orients themselves with axis parallel to field.

Electron analogy: "spinning ball of charge"

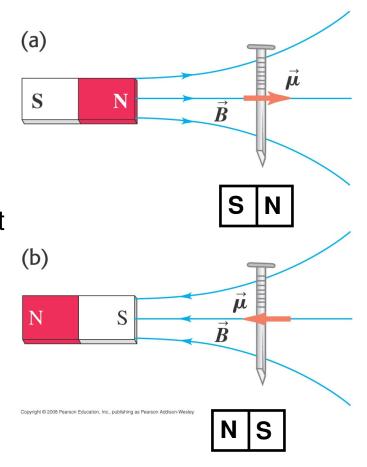

→ circulation of charge around spin axis similar to current loop → electron has net magnetic moment.

- In Fe atom, large number of electron magnetic moments align to each other → non-zero atomic magnetic moment.
- In unmagnetized Fe piece \rightarrow no overall alignment of μ of atoms \rightarrow total $\mu = 0$.
- Iron bar magnet \rightarrow magnetic moments of many atoms are parallel \rightarrow total $\mu \neq 0$.
- A bar magnet tends to align to B, so that line from S to N is in direction of B.


(a) Unmagnetized iron: magnetic moments are oriented randomly.

(b) In a bar magnet, the magnetic moments are aligned.

(c) A magnetic field creates a torque on the bar magnet that tends to align its dipole moment with the \overrightarrow{B} field.



- South and North poles represent tail and head of magnet's dipole moment, μ .

How can a magnet attract an unmagnetized Fe object?

- 1) Atomic magnetic moments of Fe try to align to B of bar magnet → Fe acquires net magnetic dipole moment // B.
- 2) Non-Uniform B attracts magnetic dipole.

The magnetic dipole produced on nail is equivalent to current loop (I direction right hand rule) → net magnetic force on nail is attractive (a) or (b) → unmagnetized Fe object is attracted to either pole of magnet.

