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ABSTRACT 

Casimir force is a cause of stiction (adhesion) between metal surfaces in Micro-

Electro Mechanical Systems (MEMS).  Casimir Force depends strongly on the separation 

of the two surfaces and the contact area.  This thesis reviews the theory and prior 

experimental demonstrations of the Casimir force.  Then the Casimir attractive force is 

calculated for a particular MEMS cantilever device, in which the metal cantilever tip is 

required to repeatedly touch and release from a metal tip pad on the substrate surface in 

response to a periodic driving electrostatic force. The elastic force due to the bending of 

the cantilever support arms is also a consideration in the device operation.  The three 

forces are calculated analytically and compared as a function of cantilever tip height.  

Calculation of the electrostatic force uses coefficients of capacitance and electrostatic 

induction determined numerically by the finite element method, including the effect of 

permittivity for the structural oxide.   A condition on the tip area to allow electrostatic 

release of the tip from the surface against Casimir sticking and elastic restoring forces is 

established.   
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INTRODUCTION 

Quantum electrodynamics (QED) predicts a force between two closely spaced 

objects due to quantum electromagnetic fluctuations.  For metals, the force was first 

studied by Casimir (1948) and is hence known as the Casimir force. Two perfectly 

conducting, uncharged, closely spaced, parallel flat plates in vacuum attract due to 

exclusion of electromagnetic modes between them. This is a purely quantum-mechanical 

effect arising from the zero-point energy of the harmonic oscillators that are the normal 

modes of the electromagnetic field [1]. The Casimir force depends on geometry [2]. 

Casimir force becomes large at small separations, equaling ~1 atmosphere of pressure at 

10 nm separation [3]. 

Fig. 1 explains qualitatively the origin of the Casimir force.  The number of 

different frequencies per unit frequency interval is V ω2/2π2c3 [4], i.e. it is proportional to 

volume.  As the volume between to metal places decreases, fewer modes are supported in 

comparison to the number of modes outside the plates.  Thus, the radiation on the inner 

surfaces of the conduction plates is less.  Fig. 1 suggests this schematically by showing 

that the space between the plates supports only short wavelength modes, while the space 

outside supports additional long-wavelength ones.  
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Figure 1: Two metal plates are closely spaced. The number of modes outside the 

plates is large because the volume is large. The number of modes in the space between 

the plates is smaller because fewer modes can satisfy the boundary conditions. Thus the 

radiation pressure on the outer plate surfaces exceeds that on the inner surfaces, resulting 

in an attraction. 

Casimir and van der Waals forces are quite different. The van der Waals force is 

due to dipole-dipole interactions between molecules and is always attractive [2].  

However, the physics responsible for the Casimir force can give rise to either attraction 

or repulsion, depending on the permittivity of the materials involved.  Thus, the attractive 

Casimir force for metal surfaces in vacuum is a special case of the more general Casimir-

Lifshitz force [5]. This thesis considers only the attractive Casimir forces between metal 

plates in vacuum. 
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Casimir force is usually very weak compared with electric forces except at very 

small distances. It may be strong compared to gravitational force as in MEMS where the 

latter force scales as volume and is completely negligible. The importance of surface 

effects (e.g. Casimir force) to volume effects (gravitational force) grows as 1/L with 

decreasing length scale L. 
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CHAPTER ONE: THEORETICAL CONSIDERATIONS 

We consider the zero point electromagnetic energy in a box, which is assumed to 

be a rectangular parallelepiped with perfectly conducting walls of area L x L and 

separation d. Electromagnetic waves inside the box must have nodes on the walls, which 

restricts and discretizes the possible frequencies. This causes a dependence on the wall 

separation d of the zero point energy, which results in a force on the walls. Smaller 

volume between the walls causes smaller the zero point energy, so that energy is lowered 

when the walls move closer. Thus, the force is attractive 

The boundary conditions require that integral numbers of half wavelengths exist 

between each pair of walls.  For example, the wavelength of an electromagnetic wave 

traveling (e.g.) in the short direction of the box must satisfy nλ/2 = d, giving a wave 

vector kz = nπ/d, where n is an integer.  Taking into account all possible propagation 

directions, the allowed frequencies are  

𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜋𝜋𝐹𝐹(𝑙𝑙
2

𝐿𝐿2
+ 𝑙𝑙2

𝐿𝐿2
+ 𝑙𝑙2

𝑑𝑑2
)
1
2  (1. 1 ) 

where each mode is enumerated by three positive integers l, m, and n.   The 

electromagnetic field is quantized with energy 

E = ∑ 2ħωl,m,n(𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 + 1
2
)l,m,n   (1. 2 ) 

Where Nlmn is the number of quanta in the lmnth mode.  The factor of 2 accounts 

for two-fold degeneracy of every frequency for which all the l,m,n are non-zero 

(Appendix A).  The zero point energy corresponds to zero quanta in any mode, or 
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E0 = ∑ ħωl,m,nl,m,n = ∑ ħ𝐹𝐹(𝑙𝑙
2𝜋𝜋2

𝐿𝐿2
+ 𝑙𝑙2𝜋𝜋2

𝐿𝐿2
+ 𝑙𝑙2𝜋𝜋2

𝑑𝑑2
)
1
2,

𝑙𝑙,𝑙𝑙,𝑙𝑙   (1. 3 ) 

The prime indicates that when one of these integers is equal to zero there should be a 

factor one half because such frequencies are non-degenerate (Appendix A).  When two of 

the integers are zero, there is no electric field at all (Appendix A). 

Because L >> d, the density of modes is much larger in the transverse directions 

than in the longitudinal direction of the cavity, so that the sums over indices l and m may 

be converted to integrals over wavenumbers, using  𝑑𝑑𝑑𝑑𝑥𝑥 = 𝜋𝜋
𝐿𝐿
𝑑𝑑𝑑𝑑 , etc. 

𝐸𝐸0(𝑑𝑑) = ħ𝑐𝑐𝐿𝐿2

𝜋𝜋2
∑ ∫ 𝑑𝑑𝑑𝑑𝑥𝑥

∞
0

,
𝑙𝑙 ∫ 𝑑𝑑𝑑𝑑𝑦𝑦

∞
0 (𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑙𝑙2𝜋𝜋2

𝑑𝑑2
)
1
2  (1. 4 ) 

For large plate separations, the sum over n is similarly replaced by an integral giving  
𝐸𝐸0(∞) = ħ𝑐𝑐𝐿𝐿2𝑑𝑑

𝜋𝜋3 ∭ (𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)
1
2

∞
0 𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑑𝑑𝑤𝑤  (1. 5 ) 

The energy required to bring the plates from a large distance to a separation d is 
U (d)= 𝐸𝐸0(𝑑𝑑) − 𝐸𝐸0(∞) 

=  ħ𝑐𝑐𝐿𝐿
2

𝜋𝜋2
[∑ ∬ (𝑢𝑢2 + 𝑣𝑣2 + 𝜋𝜋2𝑙𝑙2

𝑑𝑑2
)
1
2

∞
0

,
𝑙𝑙 𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 − 𝑑𝑑

𝜋𝜋∭ (𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)
1
2

∞
0 𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑑𝑑𝑤𝑤  (1. 6 )  

Transforming to cylindrical polar coordinates (u2 + v2 = r2, dudv = r dr d𝜃𝜃), with 

the integral over θ giving π/2 since the original integral is over positive values of u and v 

only, gives 

U (d)= ħ𝑐𝑐𝐿𝐿2

2𝜋𝜋
  [∑ ∫ (𝑟𝑟2∞

0
∞
𝑙𝑙=0 + 𝑙𝑙2𝜋𝜋2

𝑑𝑑2
)
1
2𝑟𝑟𝑑𝑑𝑟𝑟 − 𝑑𝑑

𝜋𝜋
 ∫ 𝑑𝑑𝑤𝑤 ∫ (𝑟𝑟2 + 𝑤𝑤2)

1
2𝑟𝑟𝑑𝑑𝑟𝑟∞

0
∞
0 ]  (1. 7 )  

In the second integral, substitute 𝑤𝑤 , = 𝑑𝑑
𝜋𝜋
𝑤𝑤, and then drop the primes to get 

U (d)= ħ𝑐𝑐𝐿𝐿2

2𝜋𝜋
  �∑ ∫ (𝑟𝑟2∞

0
∞
𝑙𝑙=0 + 𝜋𝜋2

𝑑𝑑2
𝑑𝑑2�

1
2 𝑟𝑟𝑑𝑑𝑟𝑟 −  ∫ 𝑑𝑑𝑤𝑤 ∫ �𝑟𝑟2 + 𝜋𝜋2

𝑑𝑑2
𝑤𝑤2�

1
2 𝑟𝑟𝑑𝑑𝑟𝑟∞

0
∞
0 ]  (1. 8 ) 
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The change of variables x = d2r2/π2 gives 

U (d)= ħ𝑐𝑐𝐿𝐿2

4𝜋𝜋
 𝜋𝜋

3

𝑑𝑑3
 [∑ ∫ 𝑑𝑑𝑑𝑑(𝑑𝑑∞

0
∞
𝑙𝑙=0 + 𝑑𝑑2)

1
2 −  ∫ 𝑑𝑑𝑤𝑤 ∫ 𝑑𝑑𝑑𝑑(𝑑𝑑 + 𝑤𝑤2)

1
2

∞
0

∞
0 ]  (1. 9 )  

The function 

𝐹𝐹(𝑢𝑢) ≡ ∫ 𝑑𝑑𝑑𝑑(𝑑𝑑 + 𝑢𝑢2∞
0 )

1
2   (1. 10 ) 

Appears in both terms of Eq. (1.9), so that 

U (d) = 𝜋𝜋2ħ𝑐𝑐
4𝑑𝑑3

𝐿𝐿2[1
2
𝐹𝐹(0) + ∑ 𝐹𝐹(𝑑𝑑) − ∫ 𝑑𝑑𝑤𝑤𝐹𝐹(𝑤𝑤)]∞

0
∞
𝑙𝑙=1   (1. 11 ) 

We evaluate this difference using the Euler-Maclaurin Formula (see Appendix B) 
 
∑ 𝐹𝐹(𝑑𝑑) − ∫ 𝑑𝑑𝑤𝑤𝐹𝐹(𝑤𝑤) =  −1

2
∞
0

∞
𝑙𝑙=1 𝐹𝐹(0) − 1

12
 𝐹𝐹,(0) + 1

720
𝐹𝐹,,,(0)  (1. 12 ) 

From Appendix B,  𝐹𝐹,(0) = 0 and𝐹𝐹,,,(0) = −4, which gives 

U (d) = − 𝜋𝜋2ħ𝑐𝑐
720𝑑𝑑3

𝐿𝐿2  (1. 13) 

And the Casimir force is  

F = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝜋𝜋2ħ𝑐𝑐𝐿𝐿2

240𝑑𝑑4
  (1. 14) 

This force was derived by using electromagnetic fluctuations [6].  
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CHAPTER TWO: REVIEW OF PRIOR CASIMIR FORCE 
INVESTIGATIONS 

M.J Sparnaay. Attractive Forces between Flat Plates 

The earliest attempt to measure the Casimir force was published in 1957 by 

Sparnaay [6], nine years after Casimir’s paper.  Parallel metal plates were used. The main 

difficulty in getting the plates close and pararallel was dust particles on the surfaces. Two 

aluminum parallel plates were used.  One of them could be moved by using lever system.  

The other was attached to a spring system. The attractive force K was measured by using 

capacity methods, but the “surfaces asperities” prevented accurate measurement of the 

force.  

If instead, two chromium or chromium-steel plates were used, the measurements 

indicated that Casimir’s relation K=A𝑑𝑑−4 was not contradicted. The constant A was 

found to have a value in the range 0.01 to 0.04×10−16dynes 𝐹𝐹𝑐𝑐2, whereas the theoretical 

value is 0.013×10−10 dynes 𝐹𝐹𝑐𝑐2. The very large difference was attributed to the 

determination of the parallelism of the plates, whose separation was varied from 0.3 μm 

to 2 μm.  

The materials of the two plates were chosen to be identical metals, because 

different metals would have different surfaces potentials and would attract each other 

according to 𝐾𝐾1=4.4 ×10−5𝑃𝑃2 𝑑𝑑−2, where P is the potential difference in millivolts and d 

is the separation in microns. The two plates were insulated so that the time constant (RC) 

of the discharge was much larger than one second.  This required R≫ 109 Ohm [7]. 
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Bressi et al. Measurement of the Casimir Force  
between Parallel Metallic Surfaces 

Bressi et al. (2002) measured Casimir force between parallel metallic surfaces [8], 

Fig. 2.  One of these was a cantilever beam (resonator) that was free to oscillate around 

its holding point.  A second beam (source) was connected to a frame whose distance to 

the cantilever was controlled by a piezoelectric transducer (PZT). The silicon cantilever 

and the source were mounted within a vacuum chamber at a pressure of ~10−5 mbar. 

The cantilever size was 1.9 cm x 1.2 mm x 47 µm with average roughness 10 nm.  It was 

coated with a 50-nm-thick chromium layer and was fixed to a copper base. The source 

had the same “longitudinal” dimensions except for its thickness, which was 0.5 mm. It 

could be rotated by stepping motors around two axes to finely control the parallelism of 

the opposing surfaces. The source and the resonator were electrically connected to a 

voltage calibrator for the electrostatic calibrations.  Alternatively, they were connected to 

an AC bridge for measuring the capacitance and for alignment by maximizing this 

capacitance at the minimum obtainable gap separation. The optical interferometer 

detected and quantified the motion of the cantilever [8]. 
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Figure 2: Experimental set up of Bressi et al [8]. 

The attractive Casimir force shifts the resonance frequency.  The shift was 

measured as a function of separation over the range 0.5- 3.0 μm.  The square of the shift 

is plotted as samples vs separation in Fig. 3.  A residual electrostatic force contribution 

was zeroed by a dynamic technique. The result is shown in Fig.3 with the best fit with the 

function (2.1)   

∆𝜈𝜈2(𝑑𝑑) = −𝐶𝐶𝑐𝑐𝑐𝑐
𝑑𝑑5

  (2.1) 

The experimental verification of the Casimir prediction for the force between two parallel 

conducting surfaces in the 0.5 - 3.0 μm range leads to a measurement of the related 

coefficient with 15% precision.   
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Figure 3: Square of the frequency shift as a function of separation for the 

experiment of Bressi et al [8]. 

  

U. Mohideen. Precision Measurement of the Casimir Force 
 from 0.1 to 0.9 μm 

Mohideen characterized the Casimir force using an atomic force microscope 

(AFM) [9].  The experiment consisted of a metallized sphere of diameter 196 μm and a 

flat plate.  This arrangement has the advantage over parallel plates of not requiring 

alignment.  The separation varied from 0.1 to 0.9 μm. The experiment was done at room 

temperature in vacuum at 50 mTorr pressure. The sphere was mounted on the tip of 300 

μm long cantilever with Ag epoxy. A 1.25 cm diameter optically polished disk was used 

as the plate. The cantilever, the plate, and the sphere were coated with 300 nm of Al in an 

evaporator. Aluminum only was used on the cantilever because of its high optical 
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reflectivity throughout the visible spectrum.  Surfaces of ball and plate were subsequently 

coated with < 20 nm layers of 60% Au and 40% Pd to prevent space charge effects due to 

patch oxidation of the Al coating.  Deflection of the sphere and cantilever leads to a 

difference signal of the laser light density between photodiodes A and B.  The sphere and 

plate were grounded to the AFM. The plate was moved towards the sphere in 3.6 nm 

steps and the difference signal recorded.  The measured Casimir force is consistent within 

the uncertainty due to the finite conductivity and roughness of the metal surface. The 

procedure of measuring Casimir force was repeated for 26 scans in different locations of 

the flat plate [9].  

 

 

Figure 4: Schematic of metallized sphere mounted on an AFM cantilever above 

metal plate [9].  

The average measured Casimir force as a function of sphere-plate separation from 

all the scans is shown in Fig. 5 as a solid squares. The theoretical Casimir force is shown 

as a solid line. The root mean square deviation 𝜎𝜎 = �(𝐹𝐹𝑒𝑒𝑥𝑥𝑒𝑒 − 𝐹𝐹𝑡𝑡ℎ)2/𝑁𝑁 is 1% at the 
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smallest surface separation can be taken as a statistical measure of the experimental 

precision where N is the number of data points.  

 

Figure 5: Force as a function of the distance moved by the plate. The solid line is 

the theoretical Casimir force.  Experimental data are represented by square symbols [9].  

J.Munday. Measured long-range repulsive Casimir–Lifshitz forces  

Long-range repulsive Casimir force between a gold-coated sphere and a silica 

plate immersed in bromobenzene was measured. When the silica plate was replaced by a 

gold film, the force became attractive (Fig.6).  The hydrodynamic force between the 

sphere and plate was used to calibrate the cantilever force constant and the surface 

separation at contact. A repulsive and attractive force in systems is satisfying the equation 

(2.2) [5]. 
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−(𝜀𝜀1 − 𝜀𝜀3)(𝜀𝜀2 − 𝜀𝜀3)  (2.2) 

.  

Repulsive forces between macroscopic bodies can be qualitatively understood by 

considering their material polarizabilities or, their dielectric response functions: 𝜺𝜺1, 𝜺𝜺2 

and 𝜺𝜺3according to Lifshitz’s theory. The interaction of one of these bodies with the other 

across the third medium goes as a summation of terms with differences in material’s 

permittivity Eq. (2.2) over frequencies 𝜉𝜉. Between two like materials, these terms are 

negative and correspond to attraction .However, when the dielectric response 𝜺𝜺3 of the 

medium is between 𝜺𝜺1 and 𝜺𝜺2  

εAu > εbromobenzene > εsilica  

Then the −(𝜀𝜀1 − 𝜀𝜀3)(𝜀𝜀2 − 𝜀𝜀3) terms are positive; the force is repulsive so that 

means the optical properties of gold, bromobenzene, and silica leads to a repulsive force 

between the gold and the silica surfaces, the limit for this repulsion is the case where 

region 2 (𝜺𝜺3) is air or vacuum and the polarizability of medium 3 is less than that of 

substrate 1 [5].  

13 
 



 

Figure 6: Measured repulsive (open circles) or attractive (solid square) Casimir 

force between a gold-coated (100 nm) polystyrene sphere and silica or gold-coated plate 

immersed in bromobenzene  [5].  

Ricardo. Measurement of the Casimir Force using a micromechanical torsional oscillator: 
Electrostatic Calibration 

Decca and Lobez [10] have used electrostatic calibrations to perform Casimir 

interaction’s measurements between a gold-plated sapphire sphere and a gold-coated 

polysilicon micromechanical torsional oscillator (Fig. 7).  The electrostatic force between 

the surfaces is zeroed by applying a bias V between sphere and plate.  Two independently 

contacted polysilicon electrodes are located under the oscillator plate to measure the 

capacitance between the electrodes and the plate. The springs are anchored to a silicon 
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nitride covered Si platform. The sphere is glued with conductive epoxy to the side of an 

Au-coated optical fiber, establishing an electrical connection between them. The entire 

setup is mounted into a can, where a pressure is less than 10−5 Torr. 

 

Figure 7: Schematic of experiment of Ref.  [10]. 

The Casimir interaction between the Au-coated sphere and the Au-coated 

polysilicon plate can be performed by using the electrostatic calibrations. After 

performing the electrostatic calibrations the potential between the sphere and the plate is 

adjusted to be equal to the average residual potential so that electrostatic force is equal to 

zero within experimental error. After that the position of the sphere is changed by Δz ∼ 2 

nm, as measured by the interferometer. The actual z is calculated using the measured 

parameters by means of Eq. (2.3) 

z = zmeans − D1 − D2 – b×θ (2.3) 
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where D2 is measured interferometrically, b is measured optically and (θ) is measured by 

observing the changes in capacitance between the plate and the two underlying electrodes 

when the plate tilts under the influence of an external torque. At this value of z the 

Casimir interaction is obtained. The procedure is repeated for different values z until a 

curve of the interaction as a function of separation is built.  

Different determinations of the Casimir interaction have been shown in figure 8. 

The force is measured by means of the deviation θ and the calibration of electrostatic 

force, while the pressure is determined by means of the change in the resonant frequency 

of the oscillator, and the calibration provided by the electrostatic interaction [10]. 

 

Figure 8: (a) Measured magnitude of 𝐹𝐹𝑐𝑐(z) with respect to the separation of the 

sphere-plate configuration. (b) Determine magnitude of 𝑃𝑃𝑐𝑐(z) between parallel plates 

using the sphere-plate configuration [10]. 
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CHAPTER THREE: ESTIMATION OF CASIMIR 
FORCE FOR HypIR CANTILEVER  

Figure 9 presents a scanning electron microscope (SEM) image of a MEMS 

cantilever device fabricated by our group at UCF.  Shown is a single pixel of an infrared 

sensor described in [11, 12] and known as “HypIR”.  This particular example has 

characteristic lateral dimension 100 µm, and it was fabricated by photo-lithography.   

Figure 10 presents an SEM image of a smaller pixel fabricated by electron beam 

lithography.  This device has a paddle with lateral dimension 18 µm.  The image clearly 

shows a tip at the central part of the paddle end.  The tip is fabricated of gold and is 

attached to the underside of the paddle.  In the image, this tip is in contact with a tip-pad 

on the surface, and it is the only part of the cantilever that contacts the surface besides the 

anchors at the ends of the folded arms.  This is the intended resting unbiased state of the 

device, the so-called “null position”.   

 

Figure 9: SEM image of MEMS cantilever with tip contact. 
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Figure 10: SEM image of MEMS cantilever with 18 µm x 18 µm paddle.  

When an electric bias is applied, the tip is supposed to lift up from the surface by 

electrostatic repulsion.  A more complete description of the elastic and electrostatic 

forces involved is presented in  [11].  The Casimir force will cause there to be required an 

additional electric bias to release the tip from the surface.  In other words, the Casimir 

force tends to make the surface more “sticky” than otherwise.  A goal of this thesis is to 

estimate that effect.  Our theoretical study is limited to the smaller of the two cantilevers 

(Fig. 10), for which the tip dimensions are 2 µm x 2 µm. 

The separation z between the tip and the tip contact is supposed to be uniform and 

to be restricted to the range 2 nm < z < 2 µm. The lower separation limit is determined by 

the typical surface roughness of a commercial silicon wafer as determined by atomic 

force microscopy [12], and the larger separation limit is according to the intended 
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operational limit.  The Casimir force is given by Eq. (1.14), in which L2 is the area of the 

plates.   Evaluating the constants, we find the force in Newtons to be  

F = 5.2 x 10-39   N-m4/z4. (3.1) 

The largest value of this force occurs at the 2 nm separation and has the value 0.325 mN 

(milliNewton).  This is the force that must be overcome by electrostatic repulsion. 

The Hyp-IR cantilever is supposed to be touching the surface in equilibrium.  To 

lift the cantilever tip, the electrostatic force must also overcome the linear elastic 

restoring force FE.  For a force concentrated at one end of a beam, the spring constant K 

has the value  3𝐸𝐸𝐸𝐸
𝐿𝐿3

   [13], where E is Young’s modulus, I is the area moment of inertia, and 

L is the length of the cantilever arms.  For the arms, we ignore that they are folded, and 

we take the length to be L = 18 µm.  The area moment of inertia I = w𝑡𝑡3/12, where w is 

the width and t is the thickness of the arms, so that K = 𝐸𝐸.𝑤𝑤.𝑡𝑡3

4𝐿𝐿3
.  The width of the two arms 

together w = 4 µm, and their thickness t = 0.4 µm.  Young’s modulus for oxide E = 73 

GPa.  Thus, we find that K = 0.6 N/m. 

The separation at which the elastic restoring force and the Casimir force are equal 

is found by setting Eq. (3.1) equal to Hooke’s law.  That distance is 24 nm.  At this 

separation, both downward forces have the magnitude 14 nN.  A log-log plot of these two 

forces is plotted as a function of z in Fig. 11.  Their power law dependences with slopes 

of -4 and +1 are evident.  Below 24 nm, the Casimir force is the dominant restoring force 

that opposes the electrostatic repulsive lifting of the tip.   
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Given the curvature of the cantilever evident in Fig. 9, and to some extent in Fig. 

10, the entire tip is surely not parallel to the surface.  Hence, the minimum 2 nm 

separation is probably not actually reached over most of the tip.  Thus, the maximum 

estimated Casimir force is an upper bound for the Fig. 10 device.  In fact, even the 24 nm 

distance of equal force is so small, that it is likely the elastic force dominates over the 

entire range of motion for a cantilever of the given shape and curvature.   

Fig. 11 also presents the repulsive electrostatic force FES vs. tip height.  This force 

is derived and discussed in the next section. 

 

Figure 11: Log-Log plot comparing Casimir, Elastic, and Electrostatic forces with respect 

to tip height z.  
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Electrostatic force 

Important to the intended function of the HypIR cantilever is that the upward 

repulsive electrostatic force be able to lift the tip against the attractive downward Casimir 

and elastic-restoring forces.  A schematic model of the device is presented in Fig. 12.  

This model of the actual Fig. 10 device is comprised of three conductors: a fixed buried 

plate (1), a fixed surface plate (2), and a moveable cantilever (3).    For simplicity, we 

assume all to have the same square shape and dimensions and that they are arranged 

parallel in a vertical stack with aligned edges. The surface plate and cantilever are biased 

at the same potential, and the buried plate is oppositely biased.  The electrostatic 

repulsive force has been determined to be [14].  

𝐹𝐹𝐸𝐸𝐸𝐸 = 𝑉𝑉2

8
[ 2 𝜕𝜕𝐶𝐶23

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝐶𝐶33

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝐶𝐶22

𝜕𝜕𝜕𝜕
]  (3.2)  

Where ζ is the height of the cantilever metallization above the surface plate metallization, 

V is the applied bias voltage, C22 and C33 are the coefficients of capacity for the surface 

plate and moveable cantilever plate, respectively, and C23 is the coefficient of 

electrostatic induction between the surface plate and the cantilever.  All three coefficients 

depend strongly on the position ζ of the cantilever metal.  Contributions involving the 

other possible coefficients in the problem depend weakly on ζ and have been neglected.  
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Figure 12: Schematic of model device for calculation purposes.  The electrostatic 

portion of the device consists of three parallel plates with 18 µm x 18 µm dimensions. 

These are a fixed buried plate (1), a fixed surface plate (2), and a moveable cantilever (3).  

The separation of the surface plate and cantilever metal is ζ and has the minimum value 

0.5 µm due to the structural oxide.  The separation of the tip and tip contact is z. 

Experimentally, we found the maximum allowed bias to be 40 V, beyond which 

dielectric breakdown destroys the device.  We take the lateral dimensions of the 

electrostatic portion of the cantilever metals to be 18 μm x 18 µm.  The thickness of the 

metal on the fabricated cantilever is 100 nm, and it sits on 0.5 µm of structural oxide, so 

that ζ = z + 0.5 µm.  We ignore the effect of oxide permittivity for now. 

The coefficients in Eq. (3.2) are calculated numerically as a function of ζ using 

the finite element method (FEM) software Elmer [15].   These data are plotted in Fig. 

13(left), where the neglected coefficients are also plotted to confirm their weak ζ 

dependence.  Fig. 13 (inset) shows a log-log plot of the three most important coefficients 

in Eq. (3.2).  Note that the slope of C23 is positive and its magnitude exceeds the 

magnitudes of the negative slopes for C22 and C33.  Hence, Eq. (3.2) is positive and the 

electrostatic force is repulsive. 
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Figure 13: The capacitance and electrostatic induction coefficients with respect to 

the separation ζ.  The inset presents a log-log plot for three of the coefficients.   

The electrostatic force calculated from Eq. (3.2) for V = 40 V is plotted Fig. 14 

for the cantilever metal height range 0.5 µm < ζ < 2.5 µm.  This range corresponds to the 

range of tip-heights ~0 < z < 2.0 µm. The curve is an exponential fit to the calculation 

data, which have unphysical periodic variations due to numerical artifacts. This curve is 

plotted also in Fig. 11. 
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Figure 14: Electrostatic force vs. ζ for the maximum permissible applied bias of 

40 V.  

According to Fig. 11, the repulsive electrostatic force is smaller than the Casimir 

force below a tip height of z = 24 nm.  Accordingly, the tip should not ever lift based 

assuming the model design.  That the cantilevers of Figs. 9 and 10 have been observed by 

video microscopy and electric response [14] to lift from the surface is because they are 

non-ideal.  Residues and curvature cause the effective minimum separation of tip and tip-

pad to significantly exceed 24 nm. 

According to Fig. 11, the electrostatic force is smaller than the elastic restoring 

force for values of z > 24 nm.  For this reason, too, electrostatic repulsion should fail to 

lift the cantilever.  That the cantilever does lift indicates that the actual cantilever is 
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longer and floppier than the model, which is not surprising considering that their folded 

structure was ignored.  Secondly, the electrostatic force is actually distributed over the 

cantilever plate (which is itself flexible) and not concentrated at the end of the arms as 

assumed.  Thirdly, we have ignored the role of the oxide, which will be shown in the next 

chapter to give stronger repulsive force.    
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CHAPTER FOUR: FORCE OPTIMIZATION 

This chapter considers more realistic calculations, which include the 0.5 μm oxide 

layers between buried- and surface-plates and on the underside of the cantilever.  The 

minimum air gap was taken to be zero. The coefficients of capacity and electrostatic 

induction are plotted in Fig. 15 as a function of ζ.  In comparison with Fig. 13, the 

magnitudes of all the coefficients of the capacitance are increased by the presence of the 

oxide layers. 

 

Figure 15: the capacitance and the electrostatic inductions vs. the gap ζ. 

The three coefficients of most importance to the force in Eq. (3.2) are plotted in 

Fig. 16 and compared with those lacking oxide.  The effect of oxide is most noticeable at 

small ζ.  At large ζ, the curves for C33 with and without oxide, and similarly for C23, 

approach each other. 
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Figure 16: Coefficients of capacitance and of electrostatic induction with strong 

dependence on cantilever displacement.  The three terms with (without) subscript “ox” 

are the results of calculations for devices with (without) oxide.   

    Fig. 17 presents the electrostatic force calculated from Eq. (3.2) and compares 

it to the results without oxide.  Electrostatic force is higher with oxide, especially at small 

ζ.   The difference is a factor of 3.9 at ζ = 0.5 µm.   
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Figure 17: Electrostatic repulsive force vs. ζ with and without the structural oxide.  

   Fig. 18 presents a plot of the three forces, where the electrostatic force 

calculation included the structural oxide, as a function of tip height z.  In comparison to 

Fig. 11, we now find a finite range 18 nm < z < 100 nm over which the repulsive 

electrostatic force exceeds the other two attractive forces.  To lift the tip beyond 0.1 µm, 

as desired for HypIR device function, the cantilever should be made less stiff.  To insure 

the tip can be lifted from the surface, the roughness of the tip pad should exceed 18 nm.  

Alternatively, the tip area can be made smaller, as considered next. 
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Figure 18: Log-Log plot comparing Casimir, Elastic, and Electrostatic forces, 

with oxide included, as a function of tip height z, for tip area 2 µm x 2 µm.    

If we assume a sharp tip with dimensions 25 nm x 25 nm, then at z = 2 nm the 

Casimir force will be 50 nN as in Fig. 19.  This is now less than the electrostatic force, so 

that the cantilever should easily lift.  The maximum height is still 100 nm, so that we still 

need arms that are less stiff. 

29 
 



 

Figure 19: Log-Log plot of Casimir, Elastic, and Electrostatic forces vs. the tip 

height z for tip area 25 nm x 25 nm.     
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CHAPTER FIVE: SUMMARY 

The Casimir force causes attraction between two metal surfaces at very short 

distances of separation.  It is considered to be a “contact” force.  It is a quantum 

electrodynamics phenomenon that arises from zero-point energy of the harmonic 

oscillators that are the normal modes of the electromagnetic field.  Such “contact” force 

creates difficulties in the operation of certain MEMS and NEMS (micro and nano 

electromechanical systems) because attractive Casimir force leads to stiction (adhesion) 

between the surfaces of MEMS and NEMS devices. 

This thesis presented a derivation for the formula for the Casimir force, which 

depends strongly on contact area and on separation of the two surfaces. This thesis also 

reviews many of the papers that presented studies of the Casimir force studies for 

different geometries by experiment and numerical methods.  The new science in this 

thesis is the evaluation of the Casimir attractive force for single pixel of an infrared 

sensor known as “HypIR” that was fabricated by our group at UCF.  

HypIR is a MEMS cantilever with a metallic tip that contacts a metallic tip pad. 

When an electric bias is applied, the tip is supposed to lift up from the surface by 

electrostatic repulsion, but to do so requires that it overcome both the Casimir sticking 

force and the elastic restoring force.    The three forces were compared theoretically for 

geometry as close as practical to that of the actual cantilever that was fabricated.  

Calculations were performed with and without considering the permittivity of the 

structural oxide, and it was found that the oxide significantly increases the repulsion.  

Nevertheless, the results suggest that the cantilever tip should remain stuck to the surface 
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for any electrostatic force available for the allowed range of applied bias, unless the tip 

area can be made as small as 25 nm x 25 nm.  That the cantilever is observed to lift under 

applied bias is a consequence of imperfections in the fabrication that cause the contact 

area to be much smaller than anticipated and/or the separation at contact to be 

significantly more than the assumed minimum of 2 nm.    
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APPENDIX A: EIGEN FREQUENCIES OF A CUBOIDAL 
RESONATOR WITH PERFICTLY CONDUCTING WALLS 
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This derivation follows [16].  The electric field inside the cavity satisfies the wave 

equation 

∇2𝐸𝐸 + 1
𝑐𝑐2

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑡𝑡2

= 0      (A1) 

And  

Div E = 0        (A2) 

(Since there is no charge in the cavity). The boundary conditions for perfectly 

conducting walls are  

Et =0,  Hn = 0       (A3) 

The solution that satisfies (A1-3) is 

𝐸𝐸𝑥𝑥 = 𝐴𝐴1 cos 𝑑𝑑𝑥𝑥𝑑𝑑 sin𝑑𝑑𝑦𝑦𝑦𝑦 sin 𝑑𝑑𝑧𝑧 𝑧𝑧 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡    (A4) 

The other components found from cyclic permutation of x,y,z and the 

magnetic field found from 

H = –i (c/ω) curl E      (A5) 

The wave vectors are kx = n1 π/a1, where a1 is the length of the box in the x-

direction.  The other two components are similarly defined.  The frequency of the 

wave is  

ω2 = c2 (kx2 + ky2 + kz2)    (A6) 

34 
 



Equation (A2) gives the condition 

A1 kx + A2 ky + A3 kz = 0,     (A7) 

so that only two of the undetermined coefficients A1, A2, A3 are independent.   

If none of the n1, n2, n3 are zero, and the coefficients A1, A2 are chosen and 

fixed, with A3 determined by Eq. (A7), then there is another set of coefficients A1’ = 

A2 ky/kx and A2’ = A1 kx/ky with the same A3 that also satisfies Eq. (A7) with the 

same frequency.  Thus, each frequency is doubly degenerate in this case.  

If one of the n1, n2, n3 is zero, then only one of the components of E is non-

zero.  Then there is only one undetermined coefficient, and once this is chosen and 

fixed, there are no other modes with the same frequency.  Such modes are non-

degenerate.   

If two of the n1, n2, n3 are zero, then at least one of the sine terms in each 

component of E will be zero, so that E = 0.  This means that there are no modes 

propagating along any of the cube axes.  The lowest frequency is one where one of 

the n1, n2, n3 is zero and the other two are 1  
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APPENDIX B: EULER -MACLAURIN FORMULA  
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The Euler-Maclaurin formula  [17]  

∑ 𝑡𝑡(𝑑𝑑) −𝑙𝑙
𝑘𝑘=1 ∫ 𝑡𝑡𝑑𝑑𝑑𝑑 = 1

2
𝑡𝑡 + 1

12
𝑑𝑑𝑡𝑡
𝑑𝑑𝑙𝑙
− 1

720
𝑑𝑑2𝑡𝑡
𝑑𝑑𝑙𝑙2

+ ⋯ (B1) 

Where n is natural number and 𝑡𝑡(𝑑𝑑)is analytic function for 𝑑𝑑 > 0, gives a relation 

between the integral and the sum of a function. It is applied to provide the approximate 

integral by finite sums or to evaluate infinite series by using integrals. To derive it, define  

𝑆𝑆(𝑑𝑑) ≡ ∑ 𝑡𝑡(𝑑𝑑)𝑙𝑙
𝑘𝑘=1      (B2) 

And expand 𝑆𝑆(𝑑𝑑) as Taylor series about point 𝑑𝑑, then evaluate it at x = n - 1 to 

get:  

𝑆𝑆(𝑑𝑑 − 1) = 𝑆𝑆(𝑑𝑑) − 𝑆𝑆 ,(𝑑𝑑) + 1
2!
𝑆𝑆 ,,(𝑑𝑑)− 1

3!
𝑆𝑆 ,,,(𝑑𝑑) + ⋯            (B3) 

Then 

𝒕𝒕(𝒏𝒏) = 𝑺𝑺(𝒏𝒏) − 𝑺𝑺(𝒏𝒏 − 𝟏𝟏) = 𝒅𝒅𝑺𝑺
𝒅𝒅𝒏𝒏
− 𝟏𝟏

𝟐𝟐!
𝒅𝒅𝟐𝟐𝑺𝑺
𝒅𝒅𝒏𝒏𝟐𝟐

+ 𝟏𝟏
𝟑𝟑!
𝒅𝒅𝟑𝟑𝑺𝑺
𝒅𝒅𝒏𝒏𝟑𝟑

+ 𝟏𝟏
𝟒𝟒!
𝒅𝒅𝟒𝟒𝑺𝑺
𝒅𝒅𝒏𝒏𝟒𝟒

+ ⋯ (B4) 

According to Euler, 𝑺𝑺 can be expressed as [14] 

𝑺𝑺 = ∫ 𝒕𝒕𝒅𝒅𝒏𝒏 + 𝜶𝜶𝒕𝒕 + 𝜷𝜷 𝒅𝒅𝒕𝒕
𝒅𝒅𝒏𝒏

+ 𝜸𝜸 𝒅𝒅𝟐𝟐𝒕𝒕
𝒅𝒅𝒏𝒏𝟐𝟐

+ 𝜹𝜹 𝒅𝒅𝟑𝟑𝒕𝒕
𝒅𝒅𝒏𝒏𝟑𝟑

 …   

where 𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝐚𝐚𝐚𝐚𝐚𝐚 𝜹𝜹 are real number coefficients. 

By applying eq. (2) in eq. (1) and using undetermined coefficient method (this 

method is used to find the particular solution coefficient for the differential equations  to 

find 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 we get  
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𝑡𝑡 = �𝑡𝑡 + 𝛼𝛼 𝑑𝑑𝑡𝑡
𝑑𝑑𝑙𝑙

+ 𝛽𝛽 𝑑𝑑2𝑡𝑡
𝑑𝑑𝑙𝑙2

+ 𝛾𝛾 𝑑𝑑3𝑡𝑡
𝑑𝑑𝑙𝑙3

+ 𝛿𝛿 𝑑𝑑4𝑡𝑡
𝑑𝑑𝑙𝑙4

� − 1
2!
�𝑑𝑑𝑡𝑡
𝑑𝑑𝑙𝑙

+ 𝛼𝛼 𝑑𝑑2𝑡𝑡
𝑑𝑑𝑙𝑙2

+ 𝛽𝛽 𝑑𝑑3𝑡𝑡
𝑑𝑑𝑙𝑙3

+ 𝛾𝛾 𝑑𝑑4𝑡𝑡
𝑑𝑑𝑙𝑙4

+

𝛿𝛿 𝑑𝑑5𝑡𝑡
𝑑𝑑𝑙𝑙5

� + 1
3!
�𝑑𝑑

2𝑡𝑡
𝑑𝑑𝑙𝑙2

+ 𝛼𝛼 𝑑𝑑3𝑡𝑡
𝑑𝑑𝑙𝑙3

+ 𝛽𝛽 𝑑𝑑4𝑡𝑡
𝑑𝑑𝑙𝑙4

+ 𝛾𝛾 𝑑𝑑5𝑡𝑡
𝑑𝑑𝑙𝑙5

+ 𝛿𝛿 𝑑𝑑6𝑡𝑡
𝑑𝑑𝑙𝑙6

� − 1
4!
�𝑑𝑑

3𝑡𝑡
𝑑𝑑𝑙𝑙3

+ 𝛼𝛼 𝑑𝑑4𝑡𝑡
𝑑𝑑𝑙𝑙4

+ 𝛽𝛽 𝑑𝑑5𝑡𝑡
𝑑𝑑𝑙𝑙5

+ 𝛾𝛾 𝑑𝑑6𝑡𝑡
𝑑𝑑𝑙𝑙6

+

𝛿𝛿 𝑑𝑑7𝑡𝑡
𝑑𝑑𝑙𝑙7

� + 1
5!

(𝑑𝑑
4𝑡𝑡

𝑑𝑑𝑙𝑙4
+ 𝛼𝛼 𝑑𝑑5𝑡𝑡

𝑑𝑑𝑙𝑙5
+ 𝛽𝛽 𝑑𝑑6𝑡𝑡

𝑑𝑑𝑙𝑙6
+ 𝛾𝛾 𝑑𝑑7𝑡𝑡

𝑑𝑑𝑙𝑙7
+ 𝛿𝛿 𝑑𝑑8𝑡𝑡

𝑑𝑑𝑙𝑙8
) 

So 

𝑡𝑡 = 𝑡𝑡 + 𝑑𝑑𝑡𝑡
𝑑𝑑𝑙𝑙
�𝛼𝛼 − 1

2!
� + 𝑑𝑑2𝑡𝑡

𝑑𝑑𝑙𝑙2
�𝛽𝛽 − 1

2!
𝛼𝛼 + 1

3!
� + 𝑑𝑑3𝑡𝑡

𝑑𝑑𝑙𝑙3
�𝛾𝛾 − 1

2!
𝛽𝛽 + 1

3!
𝛼𝛼 − 1

4!
� + 𝑑𝑑4𝑡𝑡

𝑑𝑑𝑙𝑙4
(𝛿𝛿 −

1
2!
𝛾𝛾 + 1

3!
𝛽𝛽 − 1

4!
𝛼𝛼 + 1

5!
)  

Now we can get 

𝛼𝛼 −
1
2!

= 0 ⇒ 𝛼𝛼 =
1
2

 

𝛽𝛽 − 1
2!
𝛼𝛼 + 1

3!
= 0 ⇒ 𝛽𝛽 = 1

12 
 (By using the value of𝛼𝛼) 

𝛾𝛾 − 1
2!
𝛽𝛽 + 1

3!
𝛼𝛼 − 1

4!
= 0 ⇒ 𝛾𝛾 = 0 (By using the value of𝛼𝛼 𝑎𝑎𝑑𝑑𝑑𝑑 𝛽𝛽) 

𝛿𝛿 −
1
2!
𝛾𝛾 +

1
3!
𝛽𝛽 −

1
4!
𝛼𝛼 +

1
5!

= 0 ⇒ 𝛿𝛿 = −
1

720
 

Finally, Euler –Maclaurin formula could be written as  

𝑆𝑆 = �𝑡𝑡𝑑𝑑𝑑𝑑 +
1
2
𝑡𝑡 +

1
12

𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

−
1

720
𝑑𝑑3𝑡𝑡
𝑑𝑑𝑑𝑑3

+ ⋯ 
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