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Inter-valence-band hole-hole scattering in cubic semiconductors
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Transitions between valence subbands resulting from hole-hole scattering in cubic semiconductors have been
analyzed in the frame of Coulomb interaction of valence electrons in the Luttinger-Kohn representation.
Expressions for transition rates are derived. Calculated rates for transitions between light- and heavy-hole
bands are presented for germanium. Hole-hole scattering has remarkably different transition probabilities and
scattering-angle dependence than for scattering of holes on ionized impurities. These results are particularly
important for hole lifetimes and relative subband populations in unipolar p-type devices, such as the hot hole
p-Ge laser. Features of hole-hole scattering for spin polarized hole distributions are also discussed.
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INTRODUCTION

In semiconductors, inter-valence-band (IVB) transitions
(e.g., transitions between light and heavy subbands of the
valence band) caused by hole-hole scattering are important
for applications where relative subband populations matter.
For example, hole-hole scattering affects inversion popula-
tion between light and heavy subbands in the terahertz hot-
hole p-Ge laser,' and it is the dominant scattering process
responsible for light-hole lifetime in proposed* multilayer
6-doped p-Ge laser structures. Previous Monte Carlo simu-
lations of hole dynamics in bulk p-type semiconductors
(particularly germanium) treated hole-hole interaction the
same as scattering on impurities, whose effective concentra-
tion was taken as the sum of acceptor and mobile carrier
concentrations.!” This paper develops a more accurate ap-
proach.

Electron-electron and electron-hole scattering in homoge-
neous semiconductors has been treated previously in the cen-
ter of mass coordinate system.®8 This approach is unsuitable
for hole-hole scattering that results in IVB transitions. Inter-
subband carrier-carrier scattering in semiconductor quantum
wells has been considered,’"!? but results for quantum wells,
where the valence band structure and hole wave functions
are strongly modified by confinement, cannot be applied to
bulk semiconductors. In this paper we derive rates for hole-
hole scattering in bulk cubic semiconductors using explicit
hole wave functions in Luttinger-Kohn representation.'3!#
This approach is especially important for accurate treatment
of inter-valence-band transitions caused by hole-hole scatter-
ing. To illustrate some features of hole-hole scattering, cal-
culation results for IVB light-to-heavy and heavy-to-light
hole transition rates for germanium are presented.

THEORETICAL METHODS

Spin-orbit coupling splits the sixfold degenerate valence
band at hole wave vector k=0 for semiconductors with dia-
mond or zinc-blende structure into a fourfold degenerate
band (light and heavy subbands) and a twofold degenerate
band (split-off band), which is shifted toward higher-hole

energy. If both spin-orbit splitting at k=0 and hole kinetic
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energy are small compared to the fundamental band gap, the
wave functions of light- and heavy-hole states, to lowest or-
der in k, can be written as'?

J
PERA=expE-D S S L, B M. (1)

J=3/2,1/2 my=-J

Here, v denotes the hole subband state. The w’ are basis

my
functions in the Luttinger-Kohn representation'>!* given by
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where X, Y, Z are the Bloch functions for k=0 that transform
under operations of the cubic group as Cartesian coordinates
x,y.z, respectively.!® The « and S are the spin functions cor-
responding to positive and negative spin projections, respec-
tively. The spin-orbit interaction operator is diagonal in this
representation, and the coefficients cj’mj are eigenvectors of
the Hamiltonian matrix.'?

For the Coulomb interaction potential with usual expo-
nential screening factor, the transition probability for the
121+l€2:123 +l€4 process is

Pl,2—>3,4(kl ’k2’k3’k49 V1, Vo, V3, V4)

2 e® exp(= B — 1)) g
=— (V34 V12
h dire, || — 1)
X SE, +E,—E;—Ey), (3)

where Ei, hole wave vector; %, Planck constant; e, electron
charge; ,, screening parameter; ,, relative permittivity; &,
permittivity of free space; and E;, hole kinetic energy. The
symmetrized two-particle states W, ; calculated using single
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hole wave functions in the v;th and v;th states are

W, (ki kv v))

7 J
= E{wvi(gi’ ;1) (//,,j(lgj, ;]) - wvi(lgi”—:j) lrljvj(lgp ;1)} (4)

Using expansion (1), the initial and final two-hole states can
be written as

Wi,= /—2E%[AﬁLK(’H)lﬁLK(Vz)eXP(lkl rl+lk2 )

l 1 j=1
— Y)W explik, - 7o+ iky - 7)), (5)
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where each of the indices i and j represents a pair of quan-
tum numbers (J,m;), and lﬁ,“ K(7) are basis functions in the
Luttinger-Kohn representation Eq. (2), listed as follows

K 3/2 172,172
wL} {l/f3/2’ 1/27 1/2’ 3/2»%/2,‘/’_1/2 (7)

Matrices a;; and b;; are products of coefficients

ai =] (ky)e(ky), (8)

b= CV}(k3)CV4(k4) )

Substituting Egs. (5) and (6) into Eq. (3), using Luttinger-
Kohn function orthonormality

- f Ui, Wi, A7 = O, m, 81,0y (10)

(V,, unit cell volume), and requiring momentum conserva-
tion (k;+ky=ks+k,) gives
e? exp(= By|F1 = 72))
4are,e0|r) = 1)
3 F.e? F_¢?
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where V, is the volume of the crystal. In Eq. (11) the factors
F, and F_ are

<\II3,4| |\I,1,2>

6 6
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i=1 j=1
and
6 6
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i=1 j=1

where v={v,,v,,v5,v,} is a set of initial and final states.
That Eq. (11) consists of the difference of two terms is due to
antisymmetrization of the two-hole states, Eq. (4). Deriva-
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tion of Eq. (11) involves integration of the periodic parts of
wave functions Egs. (5) and (6) over a unit cell, within which
the Fourier component of the Coulomb potential is consid-
ered constant, followed by a summation over unit cells.
Evaluation of (11) defines the desired matrix element in the
hole-hole scattering probability Eq. (3) for any initial and
final states of interacting holes. Averaging over the final hole
momenta and multiplying by the total number of holes in the
crystal N=pV,. gives the scattering rate

Rl,2—>3,4(lgl 5 ]g27 1;)

77,2 2 éhfw(kl»kmka,ﬂé[E (k) +E, (k)
- EV3(k3) - EV4(I€1 + 122 - E:;)]d];:;, (14)
with

F, F_ 2
|E1 - Ea|2 + Bsz

W(Elslg)Z’I;j’ 1_/) =

|Ez - ]€3|2 + Bsz
(15)

In Eq. (14), E(k) is the kinetic energy of a hole with mo-
mentum £ in the vth subband (generally nonparabolic) and p
is the hole concentration. Evaluation of Eq. (14) solves the
problem of hole-hole inter- and intra-valence-band scattering
rates in the approximation that the hole kinetic energy and
spin orbit splitting are small compared to the fundamental
gap.

When carrier kinetic energy is small compared to the
spin-orbit splitting, the wave function Eq. (1) can be written
in a reduced basis consisting of the ﬁrst four Luttmger Kohn
functions with J=3/2, namely {ya3, i, 4%y, "3, In
this approximation, the valence band is parabolic and con-
stant energy surfaces in momentum space are warped
spheres. Matrices Egs. (8) and (9) and factors Egs. (12) and
(13) become functions of the direction of hole motion only,
independent of the momentum magnitude.

For some cubic semiconductors, e.g., Ge and GaAs, band
warping is weak, and the approximation of isotropic bands is
valid for many problems. In this approximation, directionally
averaged effective masses of light and heavy holes can be
used, and the expansion coefficients c,’:” in the simplified J

=3/2 basis are simple functions of momentum direction

ReE+k<k+k
V'S
8,/ (k.Q,)

(kB.QZ)‘%
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2

FIG. 1. Hole-hole scattering diagram.
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where lists are ordered according to m F%;%;—%;—%, and
(0, ¢) are polar and azimuthal angles of momentum direc-
tion, respectively. The superscripts H and L refer to heavy

F+(QI’ QZ’ Q3’ Q4’ Ij)
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and light subbands, respectively. The labels “+” and “—”
denoting the time-reversed pair of degenerate states in each
subband may be considered as the projection of an “effective
spin.”

In the isotropic approximation, the energy in the vth sub-
band is E,=%2k*/2m, where m., is the directionally averaged
effective mass. The total momentum vector I€,+l€2 can be
taken along the z axis as shown in Fig. 1. Then the scattering
rate Eq. (14) is modified to

Ry 340k, ks, D)
27 (m
=f J sin 03U(l€1,122,17,k3,63,g03)d03dg03, (17)
0 0

where function

9 9 b b 9 b 9 9 9 b
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X{ ks = &) + Oks — &) }dks (18)

with
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cos U3 =cos 6, cos B5 + sin 0, sin 05 cos(@; — ¢3),

cos Uy3=cos 6, cos 05 + sin 6, sin 65 cos(¢, — ¢3).
(20)

Equation (18) defines the differential scattering rate of one of
the incident holes into direction (65, ¢3), with initial and final
subbands of the two holes indicated by the components of v.
In Egs. (18) and (19), m;=m., /m,, and &, &, are the roots of
the equation ’

(m3+m4)§2_<|/€1 + ky|cos 03)5_'_ (k, +7€2)2_k_% 5

2msmy my 2my 2my;  2m,

=0. (21)

Direction (), which is needed to calculate F, and F_, is
determined by momentum conservation. To calculate the net
inter- or intra-valence-band transition rate, the rates must be
summed over the effective-spin projection of the scattered
holes, e.g.,

03,04=+,~
(22)

Rates (22) generally depend on the relative effective spin
states of the incident holes in the sense that, for example

G(L*",L";H,L)=G(L",L*;H,L),

G(L',.L*;H,L)=G(L",L";H,L), (23)

but

G(L*,L":H,L) #+ G(L*,L*;H,L). (24)

If the effective spin state of the hole is not of the interest, as
in usual p-type devices, these rates can be averaged over
effective-spin projections of the incident holes to give, for
example
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FIG. 2. Inter-valence-band differential scattering rate for the
transition LH— HH as a function of final direction of one of the
heavy holes. E1=E,=20 meV for incident holes. Initial directions
are indicated by the arrows.
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Due to the double degeneracy of each subband, the coef-
ficients c",”mj in Eq. (1) are determined not uniquely but only

to a unitary transformation of the degenerate functions.
Bases in each of the subbands (light and heavy) can be cho-
sen independently of each other. Nevertheless, scattering am-
plitudes in a different basis can be expressed as linear super-
positions of the scattering matrix elements Eq. (11) in a basis
such as Eq. (16). Because of the orthogonality of wave func-
tions with + and — effective-spin projections, scattering
rates depend on the relative effective-spin projections of the
interacting holes regardless of basis. Rates Eq. (25) averaged
over incident effective-spin projections are independent of
the choice of basis.

CALCULATION RESULTS

Calculations were performed for germanium in the ap-
proximation of isotropic and parabolic bands. In this ap-
proximation, scattering rate Eq. (17) was used. The isotropic
heavy- and light-hole masses were taken to be 0.35m, and
0.043m,, respectively.>’ Hole concentration was set to p
=10" cm™3, which is typical for p-Ge lasers. At these carrier
concentrations the hole gas can be considered nondegener-
ate, i.e., all possible final states in a scattering process are
unoccupied. In general, occupation factors describing final
state populations could be included. The screening parameter
B, in Eq. (19) was chosen to be 10° cm™!, which is compa-
rable with the average inverse distance between scattering
centers at 10" cm™ hole concentration, though the results
depend only weakly on this choice.

Figure 2 presents calculated differential rate Eq. (18) for
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FIG. 3. Inter-valence-band differential scattering rates for the
transitions L*L*— HH (upper) and L*L~— HH (lower) as a func-
tion of final direction of one of the heavy holes. E;=E,=20 meV
for incident holes. Initial directions are indicated by the arrows.

IVB scattering of a light hole on heavy holes (with concen-
tration 10'* cm™>) as a function of final wave vector direction
for one of the scattered heavy holes in terms of polar and
azimuthal angles (65, ¢3) (see Fig. 1). Each hole was given
initial energy of 20 meV. The rate was calculated by sum-
ming over final effective-spin projections as in Eq. (22) and
averaging over initial effective-spin projections of the holes
as in Eq. (25). Initial directions (6;,¢,) and (6,, ¢,) of light
and heavy holes are indicated by arrows. The wave vector
direction of the second scattered heavy hole (6,,¢,) can be
found from momentum conservation. The scattering rate is
symmetric with respect to permutation of the two final heavy
holes since they are indistinguishable. As expected, the IVB
transition rate is sharply peaked near the direction of the
incident heavy hole, which carries most of the initial mo-
mentum of the system of two interacting holes.

Figure 3 shows calculated IVB scattering rates for the
collision of a single light hole on light holes with density of
10" ¢cm™. The differential rates Eq. (18) for L*L* — HH and
L*L™— HH processes, summed over final effective-spin pro-
jections as in Eq. (22), are plotted separately as a function of
the final direction of one of the heavy holes (65, @3). Arrows
indicate the direction angles of the two incident light holes.
Initial kinetic energy for each light hole was chosen to be
20 meV. The two plots for the different relative effective-
spin projections of the incident light holes are clearly differ-
ent, but generally the IVB transition rate is largest when
there is a large change in momentum direction between in-
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FIG. 4. Light-to-heavy hole transition rates for specific incident-

hole effective-spin projections as a function of the angle of ap-
proach 6,,. E;=E,=20 meV initially.

cident light holes and the scattered heavy hole. Comparison
with Fig. 2 shows that the angular dependence of IVB tran-
sition probabilities is strongly different in case of LL— HH
collisions compared to LH— HH collisions.

Equation (18) integrated over final directions according to
Eq. (17) determines the IVB transition rate as a function of
the angle of approach 6,=cos™!(k,-k,) and initial kinetic en-
ergies of two holes. Such rates G(L’',L°?;H,L) and
G(L°',L°2;H ,H) for the two distinct combinations of inci-
dent effective-spin projections {o, o} are compared in Fig.
4, together with the average rate g(L,H;H,H), as a function
of 6,. Initial kinetic energies were set equal to 20 meV for
each colliding hole. The process LH — HH was found to pro-
duce the highest IVB transition rate for all 6,. This rate is
largest when both incident holes are traveling in the same
direction, which maximizes their effective interaction time.
The same observation holds for processes L*L™— HH and
L*L~— HL. Note that the transition rate vanishes when inci-
dent light holes have the same effective-spin projection
(L*L*—HH and L*L*— HL processes) and travel in the
same direction with the same kinetic energy (E,=E,). This is
a consequence of the antisymmetry of the wave function Eq.
(4), i.e., the matrix element Eq. (11) vanishes for such holes
due to the Pauli exclusion principle. As will be demonstrated
below, these rates at 6,=0 become nonzero when E; # E,.
The curves G(L°',L°2;H,L) and G(L"',L°2;H H) as func-
tions of 6, depend on the choice of the basis [coefficients in
Eq. (16)], but averaged rates g(L,L;H,L) and g(L,L;H,H)
do not.

Figure 5 plots the calculated inverse IVB scattering rates
for collision of two light holes as a function of their kinetic
energy difference and their angle of approach 6,. The energy
of one of the incident holes is set to 20 meV. The resonant
increase observed for the inverse scattering rate in the upper
part of Fig. 5 is due to the decrease in the matrix element Eq.
(11) when light holes with the same effective-spin projection
have similar wave vectors. An increase is still notable for
6,=10°. The lower part of Fig. 5 confirms the absence of any
resonance when incident light holes have different effective
spin projection.

Figure 6 presents the rate G(L*,L";H,L) expanded into
effective-spin projection components of the scattered light
hole. In general, the final state of the scattered light hole
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Inverse scattering rate (s)

45 10 -5 0 5 10 15
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FIG. 5. Inverse inter-valence-band (light-to-heavy hole) scatter-
ing rates for collision of two light holes as a function of their
kinetic-energy difference AE. E;=20 meV, E,=FE;+AFE, and the
angle of approach 6, is indicated in the legend. Inter-valence-band
transition rates G(L*,L7;H,H) and G(L*,L?;H,L) [see Eq. (22)]
are summed in the upper (o=*“+") and lower (o=“-"") figures.
The upper figure includes inter-valence-band transitions that pro-
ceed via the intermediate intra-valence-band effective-spin-flip
transitions L*L*— L™L* and L*L*—L7L".

would be a superposition of effective-spin projections. Fig-
ure 6 indicates that light holes in the L*L* — HL process tend
to preserve their effective-spin projections. The specific de-
pendence of scattering rate for different final state compo-
nents on angle of approach depends on the choice of basis in
the light subband, although the rate of transitions that flip the
effective spin is always found to be smaller.

Average rates g(L,H;H,H), g(L,L;H,L), and
g(L,L;H,H) are plotted in Fig. 7 as a function of incident
kinetic energies. For these calculations, the angle of ap-
proach 6, was chosen equal to /4. Many of the features in
Fig. 7 can be understood qualitatively in terms of effective
hole-hole interaction time. Transition probabilities for pertur-
bations acting for a finite time increase monotonically with

2.0

—— L L HL
—o— L'LYHL*
—e—L'LHL

—_
[3,]
1

o
b

Transition rate (10°s™)
5

e
=}

0 30 60 90 120 150 180
6, (deg)
FIG. 6. L*L*— HL rate and its expansion into individual con-
tributing rates for different scattered light-hole effective-spin pro-
jections. E=E>,=20 meV for incident holes.
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FIG. 7. Inter-valence-band LH— HH (top), LL— HL (middle),
LL— HH (bottom) scattering rates vs hole kinetic energies for
incident-hole angle of approach 6,=m/4.

the effective duration of the interaction. Thus, all rates are
observed to increase as the speed of the holes decreases,
which is similar to the energy dependence that occurs for
impurity scattering. In the top graph, the light-hole speed is
much higher than that of the heavy hole (giving small inter-
action time) for most of the energy range, and this explains
the relatively small variation in rate with heavy-hole energy.
In the middle graph, slowing either of the incident light holes
has a large effect on the interaction time, and the LL— HL
rate rises accordingly. For the LL— HH transitions (bottom
graph) to have rates comparable to the LL— HL ones, both
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FIG. 8. Heavy-to-light inter-valence-band scattering rates for
HH— LH and HH— LL processes. E{=E,=10 meV for incident
holes.

incident holes must be slow, because the LL— HH process
has lower probability for given incident conditions (Fig. 4).

Figure 8 presents calculations of heavy-to-light hole tran-
sition rates G(H”!,H?2;L H) and G(H°',H°2;L,L) as func-
tions of @, for different effective-spin projections of the in-
cident heavy holes. Initial kinetic energy of each hole was
chosen equal to 10 meV. As can be seen from Fig. 8, heavy-
to-light IVB transitions have low probabilities compared
with the reverse (light-to-heavy hole) process (Figs. 2-7) be-
cause of the large momentum transfer between heavy and
light holes. Such transitions occur only if the two incident
heavy holes have nearly opposite directions. The rate of the
process HL— LL is negligibly small compared to even the
HH— LL process and is not plotted here.

DISCUSSION AND CONCLUSION

Evaluation of Eq. (14) determines the scattering rate for
any initial and final states of interacting holes in any cubic
semiconductors where spin-orbit splitting and hole kinetic
energy are small compared to the band gap. When summed
over scattered, and averaged over incident, effective-spin
projections [Egs. (22) and (25)] IVB transition rates that are
independent of the choice of the basis [coefficients in Eq.
(1)] are determined. In the isotropic valence band approxi-
mation the rate Eq. (17) with simplified wave function ex-
pansion coefficients, Eq. (16) can be used. Example calcula-
tion of IVB transition rates, presented in Figs. 28, illustrate
the implementation of the formulas in the simple case of
isotropic valence band approximation for Ge. The curves
plotted in Figs. 2—8 are virtually unchanged when the screen-
ing parameter B is set to zero (infinite screening length).
This confirms the unimportance of a precise screening model
for IVB transitions.

Among all IVB light-to-heavy hole scattering processes,
scattering of light holes on heavy holes LH— HH is the
strongest light-subband depopulating process (see Fig. 4).
Both of the processes LL— HL and LL— HH, normalized on
the same scattering center concentration, give transition rates
with the same order of magnitude as for the LH— HH pro-
cess, but the concentration of light holes is usually much
lower than the concentration of heavy ones. However, for
some strongly anisotropic carrier distributions with strong
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IVB inversion population, as occurs in the hot-hole p-Ge
laser,' these processes become important and should be re-
tained in calculations. Heavy-to-light hole scattering is inef-
fective (Fig. 8) and heavy holes tend to stay in their subband.
Figure 7 shows that for hole-hole scattering, slow light holes
have the highest IVB transition rates, which is similar to the
situation for ionized impurity scattering.

Scattering rates for specific effective-spin projections de-
pend on the choice of the coefficients in the expansion Eq.
(1) for the pair of degenerate functions belonging to a given
subband. In spin-polarized distributions, the coefficients
would be determined by the conditions of the experiment,
and the dependence of scattering on effective-spin projection
would be important. In usual devices without spin polariza-
tion, rates should be averaged over incident, and summed
over scattered, effective spin projections. Such rates are in-
dependent of the choice of coefficients in Eq. (1). They can
be used to calculate corrections to light- and heavy-hole life-
times in unipolar p-type systems, such as the p-Ge laser.

Because of the angular dependence illustrated in Figs. 3
and 4, hole-hole scattering rates depend on the angular part
of the light- and heavy-hole distribution functions in momen-
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tum space, in contrast with ionized impurity scattering,
where only the distribution over the magnitude of momen-
tum matters in the isotropic band approximation. The more
anisotropic the carrier distribution function, the more hole-
hole scattering differs from ionized impurity scattering. For
strongly anisotropic distribution functions, like in the hot-
hole p-Ge laser, scattering rates and lifetimes associated with
them can differ significantly from those of ionized impurity
scattering,* and the previous approach'- with doubled effec-
tive ionized impurity concentration is inaccurate. The ap-
proach presented here is especially important for situations
with high local concentrations, where ionized impurity and
hole-hole interactions are the main scattering mechanisms.
The methods presented in this paper have been used recently
in the design of p-Ge laser structures.*
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