Thin-film, wide-angle, design-tunable, selective perfect absorber from near UV to far infrared

1Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223
2Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB OH 45433
3Air Force Research Laboratory, Materials Directorate, Wright Patterson AFB OH 45433

Materials and methods

- Sequential e-beam evaporation on Si wafer
 1. 10nm -Cr
 2. 150nm -Au
 3. 10nm -Cr
 4. SiO₂

- Photolithography
- Au deposition by DC sputtering
- Metal lift off by acetone for periodic squares/ Annealing

Optically thin films to form gold nano-islands

- Samples for absorption in (a) mid-IR and (b) far-IR region
 - Reflectivity spectra showing strong absorption up to 99%

- Samples for broad-band absorption in (a) UV (b) Near IR
 - Reflectivity spectra for sample in far IR as a function of thickness of (a) SiO₂, (b) top gold square. Optimum thickness of SiO₂ and top gold square are necessary for perfect absorption to occur.

Theory

- Electric dipole is excited on the top gold square
- An image dipole is excited on the gold ground plane
- Resonance absorption can be explained by simple LCR circuit model
- LCR resonance frequency: \(f = \frac{\sqrt{2}}{2\pi\sqrt{LC}} \)
- Capacitance and mutual inductance: \(C = \varepsilon_0\varepsilon_r\frac{L^2}{2t} \)
- \(L = \mu_0\mu_r\)

\[\lambda = \pi l n(\lambda) \]

Resonance wavelength

Theoretical considerations

- Selective infrared absorber. (a) in mid-, far-IR region by periodic gold squares (b) broadband absorber in UV and NIR formed by gold nano-islands.

- DC sputtered optically thin gold films are annealed to form gold nano-islands

Accuracy

- Reflectivity of SiO₂ and gold nano-islands measured using Cary500i UV-Vis-NIR spectrometer.

Summary

- We have experimentally demonstrated strong design-tunable absorption up to 99% in the near-UV, near-, mid-, and far-IR wavelength regions for surface composed of gold squares or islands separated from a gold plane by a SiO₂ dielectric layer. The positions of the resonances are predicted with reasonable accuracy using a simple analytic model.

Acknowledgement: This project is funded by EMX International LLC.