 
Image formation by compound optical system using thick lenses

Experiment and manual prepared by Alex Terseck (Fall 2015)

Revised by Brian Ferrari, Cameron Nickle and Seth Calhoun (Fall 2016)

Revised by Rikki Leyva (Summer 2017)


Supervised by Prof. R. E. Peale

Purpose
To experimentally test the predictions of image formation using a compound optical system comprising two thick converging lenses.

Materials Checklist:
(This list is to stay with the materials box at all times.  All materials are the property of Prof. R. E. Peale and are on temporary loan to the UCF Physics upper division labs.)



1. Optical Bench with lens holders
2. 2 Thick Lenses
3. Light Source
4. Object to be imaged (preferably something with sharp edges such as an aperture or an image with high contrast and small details)
5. Screen
6. Mirror


Please inform the instructor if any of these materials are missing. 









Introduction and Background
Geometric optics predicts the distance of image formation as a function of the separation between the source and the optical system. Carefully review Appendix A and the solution to problem 1 from section 56 for a better understanding of the theoretical predictions.  Before you begin, you should know the definitions of principal foci, principal points, and principal focal length.

Experimental Setup

The optical bench is equipped with a fixed ruler.  The thick lenses themselves have no obvious reference point to mark their location.  Instead, define some point such as the edge of their mounting stand to define their position with respect to the scale.  Also note that the lens are not generally symmetrical, so record their orientation.  A cell phone light makes a convenient and bright point source.  Some are not that point like, but you can make them more point like with an opaque aperture.  

Experimental Procedure

1)	Principal Foci
Mount a first lens to the right of the origin x = 0 of the scale.  Record its position and orientation.  Determine to positions of both principal foci of this lens x = g1 and –h1 on the scale by the autocollimation method. Here you will mount a plane mirror at any position on one side of the lens and a point source on the other side.  Surround the point source with a white screen.  The position of the point source that gives the sharpest image of the point source on the screen defines the principle focus position on that side of the lens.  That is the position where rays approaching the mirror are parallel to the optical axis.

Mount a second lens to the right of the first lens.  Record its position and orientation.  Temporarily remove the first lens from the bench. Find the principal foci x = g2 and –h2. You want l = g2-(-h1)>0. If it isn’t, then move the second lens farther “down stream” until it is.  Record the final values of g2 and –h1. 
 
2)	Principal Focal Lengths
The values of the principal foci depend on the origin of the x coordinate system. In contrast, the principal focal length of a lens is a fundamental property of the lens itself and is independent of the coordinate system. 

For the first lens place the illuminated aperture or a point source at a position x < g1. Find the position of its image x’ to the right of the lens using a white screen. The principal focal length of the lens f1 is determined by the equation XX’ = -f12, where X = x-g1 and X’=x’-(-h1) are the object and image positions relative to the principal foci.  Repeat for lens 2.  Note, when the object is at x = g, then the image is at x’=∞.  For this case, X = x - g = 0, or x = g, which is the origin of the X coordinate system. Therefore when an object is located at the origin of the X coordinate system, X’=

3)	Principal Points
Locate the principal points for each lens. These are located at X = f and X’ = -f.  For a thin lens, these points coincide with the center of the lens.  Do they coincide for the thick lenses? Where are they located with respect to the lens surfaces? Are they symmetrically positioned about the center of the lens as best as you can tell?  After completing the compound lens experiment, find a really thick lens, locate its principal points, and answer those questions again. 


4)	Principal Foci and Focal Length of a Compound Lens System
Determine the principal foci and principal focal length for the compound system by the same procedures used for each individual lens. Plot Xc’ vs Xc for as wide a range of Xc values that you can. Compare the formula XcXc’=-fc2 using the calculated principal focal length fc.


Appendix A 
(from L. D. Landau & E. M. Lifshitz, Classical Theory of Fields, 4th revised edition)
(Pay special attention to section 56 and the problem. The rest is background that may need to fully understand section 56.  Most elementary descriptions of a two lens system describe the telescope, for which holds for the special situation l = 0.  This lab evaluates a more general situation.)
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Details of solution to Problem 1
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Appendix B

Example Results collected by Alex Terseck using thin lenses (2015).
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Individual lenses had focal lengths of 33 and 55 mm. The data collected is compared with calculations executed in Fortran. The data are agree better for larger l and for smaller XC, which makes XC’ larger and easier to measure accurately. 

Fortran Code:
c program in Fortran 77
c Optics

    implicit real(a-h,o-z)
    parameter (n=1500)
    double precision x2,xi,xf,f1,f2,l,fc,s1,s2

    f1 = 33.0d0
    f2 = 55.0d0
    xi = 0.0d0
    l = 38.0d0
    fc = (f1*f2)/l
    s1 = (f1*f1)/l
    s2 = (f2*f2)/l
    
    write(6,*)fc,s1,s2

    do i = 1,n
    
    xf = (fc*fc)/(xi-f1-s1)
    x2 = xf + s2
    xi = xi + 0.1
    write(7,*)xi,x2
    end do
    
    stop
    end
















[bookmark: _GoBack]Example Results Collected by Rikki Leyva using thick lenses (2017).

	Lens A at 43.6 cm

	
	g
	 - h 
	
	Principal Planes
	

	
	35.15
	52.4
	
	44.97
	

	
	
	
	42.57
	

	x
	x'
	X 
	X'
	 -f2
	 -f

	25.35
	61.3
	-9.8
	8.9
	-87.22
	9.34

	15.35
	57.3
	-19.8
	4.9
	-97.02
	9.85

	21.85
	59.3
	-13.3
	6.9
	-91.77
	9.58

	7.45
	56.4
	-27.7
	4
	-110.8
	10.53

	16.65
	57.8
	-18.5
	5.4
	-99.9
	9.99

	19.65
	58.7
	-15.5
	6.3
	-97.65
	9.88

	23.55
	60.3
	-11.6
	7.9
	-91.64
	9.57

	
	AVG
	9.82

	
	Uncertainty
	±0.38






	Lens B at 74 cm

	
	g
	 -h
	
	Principal Planes
	

	
	64.2
	83.1
	
	73.86
	

	
	
	
	72.44
	

	x
	x'
	X
	X'
	 -f2
	 -f

	54
	95
	-10.2
	11.9
	-121.38
	11.02

	61.6
	105.1
	-2.6
	22
	-57.2
	7.56

	55.6
	98.1
	-8.6
	15
	-129
	11.36

	53.6
	93.2
	-10.6
	10.1
	-107.06
	10.35

	56.6
	95.5
	-7.6
	12.4
	-94.24
	9.71

	60.6
	103.6
	-3.6
	20.5
	-73.8
	8.59

	58.6
	97.6
	-5.6
	14.5
	-81.2
	9.01

	
	AVG
	9.66

	
	Uncertainty
	±1.36














	Compound at 43.6cm and 74cm 

	
	g 
	 -h
	

	
	26.5
	93.5
	

	x
	x'
	X
	X'
	 -f2
	 -f

	22.65
	105.6
	-3.85
	12.1
	-46.585
	6.83

	19.65
	101.7
	-6.85
	8.2
	-56.17
	7.49

	21.05
	104.9
	-5.45
	11.4
	-62.13
	7.88

	15.65
	100.2
	-10.85
	6.7
	-72.695
	8.53

	11.15
	99.2
	-15.35
	5.7
	-87.495
	9.35

	18.35
	103.1
	-8.15
	9.6
	-78.24
	8.85

	13.3
	99.5
	-13.2
	6
	-79.2
	8.90

	
	AVG
	8.26

	
	Uncertainty
	±0.89
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Alight ray travelling in vacuum and impingi . .
from this body, generally have a directiofl digffrge(;r: ?rgzlifsafr?ﬁ:so;y WI} L, on Iis emergence
direction will, of course, depend on the specific properties of thelf(f(tllmg "fihls cpanfge in
However, it turns out that one can derive general laws relating to the cha):lg: inO(;]irchti:::)‘f
a light ray on passage through an arbitrary material body. In this it is assumed only that
geometrical opuics is applicable to rays propagating in the interior of the body under
consideration. As is customary, we shall call such transparent bodies, through which rays of
light propagate, optical systems.

Because of the analogy mentioned in § 53, between the propagation of rays and the motion
of particles, the same general laws are valid for the change in direction of motion of a
particle, initially moving in a straight line in vacuum, then passing through some electromagnetic
field. and once more emerging into vacuum. For definiteness, we shall, however, always
speak later of the propagation of light rays.

We saw in a previous section that the eikonal equation, describing the propagation of the
rays, can be written in the form (53.11) (for light of a definite frequency). From now on we
shall, for convenience, designate by ¥ the eikonal yj divided by the constant w/c. Then the
basic equation of geometrical optics has the form:

Vg =1 (55.1)

Each solution of this equation describes a definite beam _°f rays, in which' the direction of
the rays passing through a given point in space is determxped b_y the gradient of  at that
point. However, for our purposes this description i.s insufficient, since we are seekn}g %)ene;fl
relations determining the passage through an optical system not of a 51ngle det;nlmtfe unthet
of rays, but of arbitrary rays. Therefore we must l}se an eikonal exprgsse(tih in su; a Onralir 2f
it describes all the generally possible rays of llght, i.e. rays passing throug ' :Eiyn%unme
points in space. In its usual form the eikonal yAr) is the phase of the rays In a ¢

; i i ') of the
passing through the point r. Now we must introduce the exk.otlxgl asa dfun:it1or;nqt1§1(-),frﬂ)1 :ray).
coordinates of two points (r, I’ are the radius vectors of the 1f11§1ﬂ }';m ;:segd(;fference P
A ray can pass through each pair of P"il_1 fo 4 80 V’(ﬂl;;r iil;ts : 'fnd r’. From now on we
itis called, the optical path length) of this T2y between the P T fore and after

shall always understand by r and 1’ the radius vectors t0 points on
'S passage through the optical system-

4.2) it Vi i of the field corresponds
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determined by the gradient of its phase. Since W(r, r') js N
the direction of the ray at the point r’ is givep b:
vector n = — Oy/dr. From (55.2) it cleg

The direction of the ray is' d
difference in phase at the points I ;m_d r.
the vector n’ = dy/dr’, and at the point r by the
that n and n’ are unit Vectors:
wen st (853)

The four vectors . ', n. 1’ are interrelated. since two of them (n, n) are derivatives of 3
certain function y with respect to the other two (r, T'). The function y itself satisfies the
auxiliary conditions (55.2).

To obtain the relation between n, 0, T, I’ it is convenient (0 introduce, in place of y,
another quantity, on which no auxiliary condition is imposed (i.e.. is not required to satisfy
any differential equations). This can be done as follows. In the function y the independent
variables are r and r’, so that for the differential dy we have

d % dr + 4l “dr’ = -mn-dr+n’-dr’.

V= or or’

We now : ansformation fi 1
) ow make a Legendre transformation from r. r’ to the new independent variables n,
n’, that is, we write ‘

dy=-dn-t)+r-dn+dn’ - -r'(-r - dn'.

from which, introducing the function

=01 -n-r-y, (554)

we have

dy=-r-dn+r - qn’. (559

The function y is
variablen iy é’{n ancdagf-:c;I ?iuzrizlgular eikonal: as we see from (55.5). the independent
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I
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Substituting these expressions in ‘ -
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n, —vdn 4
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€ obtain for the differentia] dy: ey AR
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which 1‘, fhe N ;l\l b((\\.un non', 1, 1. The function y characterizes the spec
properties of the body through which the rays pass (or the properties of the field. in the case
of the motion of a charged particle).

For fixed values of n, n’, each of the two pairs of equations (35.6) represent a straig
These lines are precisely the rays before and after passage through the optical system. Thus
the equation (55.6) directly determines the path of the ray on the two sides of the opucal
systenm.

§ 56. Narrow bundles of rays

In studying the passage of beams of rays through optical systems, special interest 2
{0 bundles whose rays all pass through one point (such bundles are said to be kor
After passage through an optical system, homocentric bundles in general © b
homocentric, i.c. after passing through a body the rays no longer come together 0 any one
point. Only in exceptional cases will the rays starting from a luminous point come together
after passage through an optical system and all meet at one point (the image of the luminous

point).F i _

One can show (see § 57) that the only case for which all homocentiie bundles remain
strictly homocentric after passage through the optical system \\ the case of \\k‘l}nc.\l imaging.
i.e. the case where the image differs from the object only in its poston of onientation, ot 1s
mirror inverted. . . - P

Thus no optical system can give a complctol.y shsu*p image of an object \h;\: \m:\ mm:‘
dimensions) except in the trivial case of idf‘nnc:\l imaging.i ‘Oan_\ ;xg\;tl\t\‘|r:\;.:“:§:t x:\:r
completely sharp images can be produced of an extended body, in any case other than i

identical imaging.

The most important case where there I8 §
into homocentric bundles is that of syﬂlcu\ - o oiven optical system). This line is
opening angle) passing close 10 & particular line (for a given optical Sy3

called the opric axis of the system.

I :\ppn\\&il\mtc transition of homocentric bundles
atly narrow beams (i.e. beams with a small

Nevertheless, we must note that even infinitely narrow F‘“t‘:“‘;? :"’l\.‘:‘;::\\::\il:tth
dimensional case) are in general not homogentricy \\‘f“hz;\ c :::‘:l‘t‘(‘kl\ called astigmatism).
dbundle different rays intersect at different poinis “h.\‘\ P ‘t:“: ) \ﬁll\‘i‘\ll radii of curvature
Exceptions are those points of the wave surface at “““cﬁh l (;u\l\::ut‘h points can be considered
are equal—a small region of the surface in the neighbout “‘: is homocentric.

4 spherical, and the corresponding NArOW pundle of rays B

i SULULAN \kmhlil\i on
- s OF o therr ContMe
it ,l The point of intersection can lie either on the rays "\N\\S\‘l\(‘ u
iy . A 28 .
+ the mage is said to be real or ‘_‘"”“"

£ Sueh te : {rron.
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image9.png
THE PROPAGATION OF LIGHT

148 § 36

We consider an optical system having axial symmetry.T T}(IC axis of' SYmmetry of g,
system is also its optical axis. The wave surface of a bun.dle of rays tr?vel’hr_l_g along this axis
also has axial symmetry; as we know, surfaces of rotation have equal radii of Curvature 5
their points of intersection with the symmetry axis. Therefore a narrow bundle moving iy
this direction remains homocentric. o ' ‘

To obtain general quantitative relations, determining image formation with the aiq of
narrow bundles, passing through an axially-symmetric optical sys@m, we use the genery)
equations (55.6) after determining first of all the form of the function x in the case under
consideration.

Since the bundles of rays are narrow and move in the neighbourhood of the optical axis_
the vectors n, n’ for each bundle are directed almost along this axis. If we choose the optical
axis as the X axis, then the components, n,, n,, n}, n] will be small compared with unity. As
for the components n,,n};n, = 1 and n/ can be approximately equal to either +1 or -1, I
the first case the rays continue to travel almost in their original direction, emerging into the
space on the other side of the optical system, which in this case is called a lens. In the second
the rays change their direction to almost the reverse: such an optical system is called a
mirror.

Making use of the smallness of ny, n., ny,n;, we expand the angular eikonal
X (ny,n,,n}, n;) in series and stop at the first terms. Because of the axial symmetry of the
whole system, y mast be invariant with respect to rotations of the coordinate System around
the optical axis. From this it is clear that in the expansion of y there can be no terms of first
order, proportional to the first powers of the y- and z-components of the vectors n and n”;
such terms would not have the required invariance. The terms of second order which have
the required property are the squares n” and n’? and the scalar product n - n”. Thus, to terms
of second order, the angular eikonal of an axially-symmetric optical system has the form

X = const + %(nﬁ +n2)+ flnyn) + n.nl)+ g(n’.2 +nl?), (56.1)

y

where f, g, h are constants.

For definiteness, we now consider a lens, so that we set ny = 1; for a mirror, as we shall
show later, all the formulas have a similar appearance. Now substituting the expression
(56.1) in the general equations (55.6), we obtain:

ny(x-g)-fn, =y, Sy +nl(x"+ h) = Y,
n(X=g)=fni =z fr4nl(x 4 hy=2", (562)

8iVC{1d-¥£)y, 2, X, ¥, 7/, would determine one definite set of values n,, n_, n’, n’, thatis, there
wou e ‘ust 0 : . ) . yr gy Ny 1 8 ,
ecess atallrays starting from x, y, z shall pass through x’, y, 7/, it is consequent's
:;cetsls)ary that the equations (56.2) not be independent, that is, one pair of these equations
ust be a consequence of the other. The necessary condition for this dependence is that th¢

T It can b . o
neighbourho‘:);l:)ofv;l}zl Satthe problem of image formation with the aid of narrow bundles, moving 1 the
an axially-symmnt he op‘ncal axis In a nonaxially-symmetric system, can be reduced to image formation in

Sy Tic system plus a subsequent rotation of the image thus obtained, relative to the 0bject
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- ients in the one pair of equations be proportional coaffin:
?l):::sve o ot have al to the coefficients of the other pair.
x-8 = — f — _y_ _ Z
;YR Ty (56.3)
In particular,
(-8 &+ h)=-f2 (56.4)

The equations we have obtained give the required connection between the coordinates of
the image and object for image formation using narrow bundles.

The points X = g and X" = — h on the optical axis are called the principal foci of the optical
system. Let us consider bundles of rays parallel to the optical axis. The source point of such
rays is, clearly, located at infinity on the optical axis, that is, x = 0. From (56.3) we see that
in this case, x" = — h. Thus a parallel bundle of rays, after passage through the optical system,
intersects at the principal focus. Conversely, a bundle of rays emerging from the principal
focus becomes parallel after passage through the system.

In the equation (56.3) the coordinates x and x” are measured from the same origin of
coordinates, lying on the optical axis. It is, however, more convenient to measure the
coordinates of object and image from different origins, choosing them at the corresponding
principal foci. As positive direction of the coordinates we choose the direction from the
corresponding focus toward the side to which the light travels. Designating the new co-
ordinates of object and image by capital letters, we have

X:x—g, X’:x’-}-h, Y:y,‘ Y’:y/, Z:Z, Z’zz'.
The equations of image formation (56.3) and (56.4) in the new coordinates take the form

XX =2, (56.5)
v_z _f__ X (56.6)

Yy -z X f
The quantity fis called the principal focal length of the system. . .
The ratio ¥’/Y is called the lateral magnification. As for the longltudu?al m.agr%zﬁcano-n,
since the coordinates are not simply proportional to each other, it must be xyntten in dlfferent}al
form, comparing the length of an element of the object (along the direction of t?e ax1.s) “.”th
the length of the corresponding element in the image. From (56.5) we get for the longitudinal

Magnification”

P (L)z (56.7)
L%

dx’

dX

We sce from this that even for an infinitely small object, it is lmPOSlStlblgl t(: ::;328:
geometrica]]y similar image. The longitudinal magnification is never equal to the tr

CACCPLin the trivi identical imaging)-

vial case of identical imaging . L.
- bundie passing through the point X = £ on the optl.cal. axis 1r}ters<le:cts n(})r;ce; ;nﬁc:)rﬂe (astét};):
I()mm X' = _f on the axis; these two points are called princip i pomt;- —rZ(')— 0;] we have the
X fny = Y,n,X —}’n; = Z)itiscleart fY= ’

e hat in this case (X =/»
“Yuatiopg
‘908 n, = n! p, =n,. Thus every ray

incipal point crosses the
: irecti to its original direction.
OPtical ax; ] point in 2 direction parallel g

starting from 2 pri
$ again at the other principa
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i . he eguations of image formation in the £,
Substituting in (56.3) it is €asy to obtain the equallo e form
11 _ 1 .
£ g’ f A3

One can show that for an optical system mth. all thick
thin lens), the two principal points almost coincide. lri t joee T
particularly convenient, since in it &and &’ are then measured prachic

same point. )

If the focal distance is positive, then objects located i
imaged erect (Y’/Y > 0); such optical systems are said t0 be ¢
X >0 we have Y’/ <0, that is, the object is imaged in inverted
to be diverging.

There is one limiting case of image formation which is not contained in the formuls
(56.8); this is the case where all three coefficients 7. g. / are infinite i1.2. the opacal sysem
has an infinite focal distance and its principal foci are located at infinity ). Going
of infinite f, g, h in (56.4) we obtain

w :k’ = -—-ﬁ-u—"ﬂ’(

Since we are interested only in the case where the object and its image are located o fimi=
distances from the optical system, fig

ratios h/g, (f% - gh)lg are finite. Denot

. h must approach infinity in such
ing them, respectively. by o and B. w
Y=o+ f.

For the other two coordinz / ' hav -
rdinates we now have from the general equation (36.

,

3
v =

Ll
.,‘.n

Finally, again measurin
arbitrary point on the a
the equations of image

g the coordinates x and ’ from different
Xis and from the image of this

formation in the simple form

origins. namely from so@®
point, respectively. we finally 008

| X=&X Y=tay z-sq4 0%
’rl;[};ll::i)th;h!(?ngltudingl and transverse magnificatio
A s 305 gl e
s (56. ugh (56.9), deriy 7 us fi o
AL o L e o ety 2
PO?nts for the x coordil:::]a(ti:::S (;f rgys lraVellin‘g oo {k{e optrj “\alu:f 'l?]ﬁeﬁ;:ﬂ;: ,gwf
i b comesponon e 0 objept and image must a)y a\,-i be‘j;k along e opt® ;
of the ray, 1 doing this I:VOlﬂtS rncipa foctor principal poi .‘3‘ - s m’; :
oo Ve MUStKeep in ming that fo s optical sysgem ot e 2
the same plape. : € Optical axis in frq ' an optical system not posST= ot e ¥
Nt of and beyond the system do B¢
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ns are constants (but not equal © &
scopic.
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Solution: Let f and f; be the focal lengths of the two systems. F h
Sys - For each system separatel
, | Yy, we have
X\ X[ = ‘f;z, XX = "f22~
Since the image produced by the first system acts j
. o duced by s acts as the object for th i
dlstancﬁ,buween lht,. rear r,)n.nmpal focus of the first system imd the f; ; Set"con(j" e socond o
X, = X[ L. expressing X3 in terms of X,, we obtain e e

x; = XSE
ORI,

2 . 2
(oo ) 1)- {24

from which it is clear that the principal foci of the composite system are located at the points X,
—f21, X3 = £}l and the focal length is

or

__hh
f=-2
(to choose the sign of this expression, we must write the corresponding equation for the transverse magnification).
3
R
1 2
_____ PSS O S S oSS
Sl
x 0 X
Fic. 8.

In case [ = 0, the focal length f = o, that is, the composite system gives telescopic image. formation. In
this case we hz;ve X3 =X, (fo/fi)?, that is, the parameter & in the general formula (56.9) is & = fo/i-

2. Find the focal length for charged particles of a “magnetic lens” in the form of a longitudinal homogeneous
field in the section of length / (Fig. 8).F AN . ic field: therefore
Solution: The kinetic energy of the particle is conserved during its mouo]n u:‘a miig;e—uix‘l e+ Sy is
the Hamilton—Jacobi equation for the reduced action So(r) (where the total action 1§ 5 = = = 20

¢
(VSO ’f‘A) =8

where

[72 = ,'j..z_ o mzcz = const.
) etic field, choosing the x axis along

agn ‘
ogeneous mag etric optical system, W€

Using formula (19.4) for the vector PO‘ent?al il hotr'réal axis of an axially-symm
the field direction and considering this axis as B o

get the Hamilton—Jacobi equation in the form:

1eld 1 when wWe neglec N of
ght be the field lect the dlstu(bance of the h()mogeneu
d long SO]CHOld h £
nside a 5

the field near the ends of the solenoid.

- e
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Let f, and f, be the focal lengths of the two systems.

For each system separately,

[
i

Rear principal focus Front principal focus
of the first system of the second system.




image14.jpg
The image produced by the first system serves as the object for the second.

>
:

‘Fl

i 2 H

= the distance from the rear principal focus of the first system to
the front principal focus of the second system.
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Now complete the square
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The front principal focus of the composite system occurs at X, =0, or X, = -f,?/I.
Light emitted from a point source at this position will emerge as a parallel beam
after the composite system.

The rear principal focus of the composite system occurs at X, = 0, or X,’ = +f,2/I.

Parallel rays incident on the composite system will be focused toa point at this
position.

(2
= X,+:‘:E-l =0 —n)(f—f_r
e

‘ et 2
X.= pi 02 X,* ,f’_

< z

Principal foci are not symmetric with respect to frontand back surfaces of
composite system.
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CHAPTER 7

THE PROPAGATION OF LIGHT

§ 53. Geometrical optics

A plane wave is characterized by the property that it§ direction of propagation and amplitu@e
are the same everywhere. Arbitrary electromagnetilc waves, Of. course, do not have this
property. Nevertheless, a great many electromagnetic waves, wbxch are not plane, have the
property that within each small region of space they can be considered to be plane. For this,
it is clearly necessary that the amplitude and direction of the wave remain practically
constant over distances of the order of the wavelength. If this condition is satisfied, we can
introduce the so-called wave surface, i.e. a surface at all of whose points the phase of the
wave is the same (at a given time). (The wave surfaces of a plane wave are obviously planes
perpendicular to the direction of propagation of the wave.) In each small region of space we
can speak of a direction of propagation of the wave, normal to the wave surface. In this way
we can introduce the concept of rays—curves whose tangents at each point coincide with
the direction of propagation of the wave.
8675?7!66[5:;2’0(;1'22?Cli::eoieirgpagation of waves in this case constitutes the domain of
particular of light_ s the‘ quently, geometrical optics con{sxders the propagation of waves, i0

’ propagation of rays, completely divorced from their wave propertics

In other words, geometri i
In ohe geometrical optics corresponds to the limiting case of small wavelenglh

We now tak -
equation deterfn iurﬁnthem(iegvat-l('m of the fundamental equation of geometrical optics—ihe
the wave (any compgonent :)rfe;:uon of the rays. Let f be any quantity describing the field of

or H). For a plane monochromatic wave, f has the form
f: aei(k'r‘wha) - aei("‘i*i+“) (531)

(we omit the Re; it is up,

We write the derstood that we tak '
expressio © take the real part of all expressions)-
n for the field i the form P x
In case the wave i f=ae, (532
generally gpeqyi S Ot plane, by . ais
the e N8, a function o geometrical optics j i litude
lasgzlzonal' does nog atcetm“.of the coordinages anIZIt]tcifnls apg gfabll? th‘:l/av[vnhr;c is call
llantityA This 3 a Slmple fi 3 €, an e phase ¥, ped
thy is is : orm, as : 5 at ¥
r()o:/lgh one \lkiawelengflllear Mmediate]y fromutlh(53.l)' " '8 cUsEIE howeveﬁ tr?w o
terms " Small space roq: and 8Cometrica] opy; © fact that it changes by 277 Wh®
$ Of fitst orgey Wilon PUCS corresponds to the limit 4 = 0.

S and tj .
have e inter

soef
. : ess
vals [he eﬂ(onal w can be expanded n serl
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APRSSION with (53.1), we can write

e
ted at the origin). Comparing this

9y
K= ar =grad v, w=- gll
N | o’ (53.3)
L correspo g s fae N
:\u\\“\ ﬂ\; \:\L :E C m: 1‘0 the fact that in each small region of space (and
e C Wave can be ¢ Addere Q y i
o csed a8 can be considered as plane. In four-dimensions and each small interval of
pressed o ensional form, the relation (53.3) is
A
EME (53.4)
where &, 1s the wave four-vector.
We saw in § 48 that the co {
v Y48 the mponents of the four-vector k' ; i
(33.4), we obtain the equation ek AR ST

oy dy 0
- (535)

axi axi

This equati s eik jon, i
1\_; gqg{{mon. the A.zkonal equation, is the fundamental equation of geometrical optics
\e eikonal equation can also be derived by direct transition to the limit A — 0 in the wave

equation. The ficld f satisfies the wave equation

il
ax,-axi i
Substituting f = ae'¥, we obtain
d%a L da_ oy iv o4 alw I t9l[/
: % | __________‘_’ R e sl =0. o
ax,ox * 1 9x; ox ¥ R ox;0x'  0x; ox' g o

therefore we can neglect the

ve, is a large quantity;
more at equation (53.5).

Egllge eikonal , as we pointed out abo .
We ree terms compared with the fourth, and we arrive once ' .5).
\ qukush“’“ give certain relations which, in their application to the propagation of light in
in th )_m, lead only to completely obvious results. Nevertheless, they‘ are 1m;.>0111’tapt becau;ei
medi;lr general form, these derivations apply also to the propagation of light in materia
L‘pir::l 1 the form of the eikonal equation there results a rgmarkable anal.o%y :retm;?lz i:?xltit;cezl
. u{e.md xhg mechanics of material particles. The mousm of a material ]l() g ;]c Ao
eiqu;u-l\H".““'ltO“—Jil\‘obi equation (16.11)- This equation, like the ei l(()n ol g] . acm‘m i
rl’li\le(; 0 in the first partial derivatives and is of second degree- As we ; e
10 the momentum p and the Hamiltonian arof the particle by the
as a5

—_—

e I
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142 ith the formulas (53.3), we see that the wave vector Plays

Comparing thes : the momentum of the particle in mechanics,

e
3 . - hile g,
same fole In £¢ he Hamiltonian, 1.€-. the energy of the particle. The gy
frequency plays the role of the related to the frequency by the formula k = mlcSolute

; ] wave vector is 3
magnitude k of the ' _ cen the momentum and ener a8
rele;tion is analogous t0 the relation p = #lc betw gy of 3 Particle

i i ight.

with zero mass and velocity equal to the velogty of ligh
For a particle, we have the Hamilton equations

oA A

p=-——> VEI="30"
ar P

In view of the analogy we have pointed out, we can immediately write the corresponding

equations for rays:

) do . OO
= =5 (53)

T or’
In vacuum, = ck, so that k = 0. v = cn (nis a unit vector along the direction of propagation);
in other words, as it must be, in vacuum the rays are straight lines, along which the light
travels with velocity ¢.

The analogy between the wave vector of a wave and the momentum of a particle is made
especially clear by the following consideration. Let us consider a wave which is a superposition
of monochromatic waves with frequencies in a certain small interval and occupying some
finite region in space (this is called a wave packet). We calculate the four-momentum of the
field of this wave, using formula (32.6) with the energy-momentum tensor (48.15) (for each

monochromatic component). Replacing ' in this formula by some average value, we obtain
an expression of the form

P = AK, (33.9)

where the coefficient of proportionality A between the two four-vectors P’ and K is some
scalar. In three-dimensional form this relation gives:

P=Ak, #=Aw. (539

g:: Sre»;:r::c::]:gs?elfnntlg I:rfc[)lttllllg al?l?ei?]ergy of a wave packet transform, when we g0 from

Pursuing the analogy, we can ‘;stablishefWave voctor and the fredyong to the
principle of least action in mechanics. H or geometrical op R prlpc1ple a.nalo.gous m as
51 L df =0, dince it tarms . . However, it cannot be written in HamlltAoman for i
to the Lagrangian of a particle. Si impossible to introduce, for rays, a function s fan
7 by the equation L=p - 9 / /8mce tBe Lagf?“glan of a particle is related to the Hamilto™!
the momentum by the wavé v P - 7 replacing the Hamiltonian 5 by the frequency g tics
K - dwlidk - . But this eCtO-r k’_We should have to write for the Lagraﬂgian ‘111. qp ]0
introducing a Lagrangian efxpressmp 18 equal to zero, since @ = ck. The impossibilly
earlier that the propagationorfrays 15 also clear directly from the consideration menuo:sS-

If the wave has a deﬁniteoc rays 1s analogous to the motion of particles with 261 ﬁ;d is
given by a factor of the form (:zrzisatf nt frequency @, then the time dependence o' ! : sﬂ'i“"
- Therefore for the eikonal of such a wave W€ ©

V==t + yyx,y, 2),

€ coordinates. The eikonal equation (53.5) now take

(53,10)
s the

where

; .
et Yo 1s a function only of th
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2

(grad y)? = @
ct’

The Wave surfaces are the surfaces of constant eikonal, i.c. the . 5310
, »1.¢. the famil

2y =const. T he rays themselves ar . y of surfac

v Y B 7 T ction i ; € at each point norm es of the form

qurface: their direction is determined by the gradient V al to the corresponding wave
As is We Yo.

Il known, in the case where the ¢ i

. ‘ nergy is constant inci

parlides can also be written in the form of the so-called pr’i‘nhceiplslzugj}ﬁ}f of least action for
aupertuis:

5S=6Ip~dl=0’

where the ir{tegrahon extends over the trajectory of the particle between two of its points. I

his expression the momentum is assumed to be a function of the energy and the co&%ﬁi{ n
The analogous principle for rays is called Fermat’s principle. In thisf= case, we can write i)sv
analogy- ’ :

6w=5j k- dl=0. (53.12)

In vacuum, K = (w/c)n, and we obtain (dl - n = dl):

5“- dl =0, (53.13)

which corresponds to rectilinear propagation of the rays.

§ 54. Intensity

In geometrical optics, the light wave can be considered as a bundle of rays. The rays
themselves, however, determine only the direction of propagation of the light at each point:
there remains the question of the distribution of the light intensity in space.

On some wave surface of the bundle of rays under consideration, we isolate an infinitesimal
surface element. From differential geometry it is known that every surface has, at each of its
points, two (generally different) pr'mcipal radii of curvature. L‘et ac and bd (ifig. 7) be
elements of the principal circles of curvature, constructed at a given element of the wave
surface. Then the rays passing through a and ¢ meet at the corresponding centre of curvature

0. while the rays passing through b and d meet at the other centre of curvature 0.
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For fixed angular openiniilﬁ)fnﬁe[:fsg corresponding ra\td'n of Cur:.imre R, and R, (ei:rcs
ac and bd are, clearly, p;‘)OPThe area of the surface element 1s é)rqpfo ional L0 the py uq‘to
he lengths 00 and 0:0)- roportional to R,R,. In other words, if we consider e meOf
the fengths &0 B0 4D mied by a definite set o e 45 WE MOVE #long them e g,
e wave surla ; ly to K2 ..
2? g:e element will Ch;ngﬁltiﬁ)s?:;[li(?saih}é eneray ﬂux density, is inversely Proport; onal ¢
o ﬂfle O[llfgal:;?gb;hewhich a given amount of light energy passes. Thus we ATive o thz
urface a

the s : ugh
result that the intensity 15 t
cons

I= RR,’ (541

This formula must be understood as follows. On each ]r]a}l’](AB H; Is:;%f Zc)eth'ere are definy,
points O and Oy, which are the centres of Curvature.of all t };3 wat\;l S Irrflters?mmg the
given ray. The distances 00, and 00, frorr.l~ the point O where i ; wafvei] surlace intersecyg
the ray, to the points 0 and O, are the. radii of curvature R, an 2f c;h tlle }\;vave surfa?e al
the point . Thus formula (54.1) determines the change in intensity ow e lig ht al.ong a given
ray as a function of the distances from de.ﬁ'mte po.mts on th1§ ray. We f:mp asize that thjg
formula cannot be used to compare intensities at different points on a single wave surface.

Since the intensity is determined by the square modulus of the field, we can write for the

change of the field itself along the ray

_const_ ik (542)

\f’ Rl R2
where in the phase factor ¢*® we can write either ¢*® or e¢**2. The quantities ¢*® and
¢*R2_(for a given ray) differ from each other only by a constant factor, since the difference
R, — R,, the distance between the two centres of curvature, is a constant.

If the two radii of curvature of the wave surface coincide, then (54.1) and (54.2) have the
form:

const const
I= o f= 7
This happens always when the light is emitted from a point source (the wave surfaces are
then concentric spheres and R is the distance from the light source).

From (54.1) we see that the intensity becomes infinite at the points R; =0, R, =0, i¢.a
the centres of curvature of the wave surface. Applying this to all the rays in a bundle, we find
that the mteqsity of the light in the given bundle becomes infinite, generally, on two surfaces—
the geometrical loci of all the centres of curvature of the wave, surfaces. :I‘hese surfaces ar

called caustics. In the special case of a beam of rays with spherical wave surfaces, the tW0
caustics fuse into a single point (focus). b :

We note from well-known results o
loci of centres of curvature of a fam

ek, (54.3)

f differential geometry concerning the properties (’m]e

is neces e ol ily of surfaces, that the rays are tangent to the caustic:





