Electrodynamics II Exam 3 problems 2017
Section 53

1. The discovery of superconductivity was based on a resistance measurement.  Show that infinite conductivity implies only that B = constant inside the superconductor, not that B = 0.  In other words, show that Maxwell’s equations don’t predict the Meisner effect.
2. Describe how infinite conductivity was first measured.  Kamerlingh Onnes Akad. Van Wetenschappen (Amsterdam) 14 (113), 818 (1911). 

3. Describe the measurement of persistent current in J. File & R. G. Mills, Phys. Rev. Lett. 10, 93 - 96 (1963).  

4. For decades, no one thought to measure the B-field inside a superconductor, assuming that B remains constant inside when the external field is changed, as for a perfect conductor.  Obtain a copy of W. Meissner and R. Ochsenfeld, Naturewissenschaften 21 (44), 787-788 (Nov 1933) and describe the experiment that showed that in fact B = 0 inside.  Translated in Allister M Forrest, “Meissner and Ochsenfeld revisited,” Eur. J. Phys. 4, 117 (1983).

5. Suppose that an electric field momentarily arises within a superconductor.  Find a differential equation for the current density in terms of the electric field E and the density of superconducting electrons n.  Substitute this equation into Faraday’s law to obtain a differential equation for j and B.  Integrate the differential equation and restrict the possible solutions to those for which the integration constant is zero.   This result is the London Equation, which leads to the Meissner effect.  Show from these results (and  = 1) that 2 B = B, where 2 = (m c2/4  n e2).  Consider the semi-infinite superconductor occupying the half space x>0, and show that B(x) = B(0) exp(-x/.  Evaluate  for n = 1022 cm-3.  

Section 54.  

1. Try to imagine a magnetic field in 3D with no r or  component and satisfying H = constant.  Can you show whether such a field can exist?  Think about lines of longitude on a sphere and comment.

Section 58.  

1. For what characteristic conductor dimensions would the quasistatic approximation be applicable for the following regions of the electromagnetic spectrum: VHF, UHF, microwaves, mm-waves, THz, thermal IR, near-IR, visible.  (Note: An additional condition determined in extra problem 2 limits the approximation to THz (far-IR) frequencies and below.)

2. For gold, what is the highest frequency of the field for which we are justified in using the DC value of the conductivity in the field equations.  What wavelengths?
3. Why must Et be continuous at boundary between conductors with different conductivities, or between a conductor and vacuum, even though we can’t ignore the time derivatives of the magnetic field inside the conductor?
4. Derive the differential equation for the B-field in a homogeneous medium with uniform conductivity  and constant magnetic permeability  in SI units, starting from the microscopic Maxwell equations, in the quasistatic approximation.
Section 59.  

1. For the condition of locality to hold, the electron mean free path to be less than the penetration depth. What limit does this place on the frequency (in Hz) of the field variation for a metal such as gold if the quasistatic approximation is to be valid?  What is the shortest wavelength?

2. Show that <S>t = Re[(c/4) (1/2) E x H*] for periodically varying fields.

3. Show that for fields (59.3) and 59.5) entering a conductor in the high frequency limit that <S>t = (c/16) (/2) |H0|2.  Do not assume that H0 is real.

4. What is the characteristic penetration depth in aluminum for 60 Hz electromagnetic noise?  Could use aluminum foil to make an effective Faraday cage to screen an experiment from this kind of interference?
5. For a quasistatic electromagnetic field, sketch the penetration depth  as a function of frequency  and indicate the mathematical relation between them.  At a given depth inside a conductor, how does the electric field magnitude E depend on frequency, considering both limits <<L and >>L, where L is the size of the conductor.  Sketch E vs.  from DC up to the limits of validity for the quasistatic approximation.
6. A conducting cavity is driven as an electromagnetic resonator.  If perfect conductivity is assumed, which of the following transverse and normal field components must vanish at the inner cavity walls: En, Et, Bn, Bt?  No credit without explanation for your answer. 

Section 60.

1. Derive the differential equation for the electric field inside a conductor in the quasistatic approximation, namely E = (4/c2) E/t. 
2. Look up the series expressions for Bessel functions and verify the eqns. (60.5) for the fields in a long, thin, straight circular wire that carries a non-zero periodic current in the low frequency limit.

3. Low frequency limit of skin effect.  Starting from the complex fields (60.5) for a long, thin, straight, circular wire with periodically varying total current, find the amplitudes E and H as a function of r, keeping just the two terms of lowest order in (r/).  Plot E and H vs. (r/a) for 0<r/a<1, where a is the radius of the wire for a/ = 0.1.
4. Find Eq. (60.7) for the electric field in a wire of circular cross section in the limiting case of high frequencies such that (a/ >> 1).
5. High frequency limit of skin effect.  Plot the amplitudes of the electric and magnetic fields in a long, thin, straight, circular wire that carries a periodically varying current in the high frequency limit for a/ = 10. 
6. Why is the high frequency inductance of circuit elements somewhat smaller than the low frequency value?
7. What is the penetration depth for copper at frequencies of 60 cps and 100 Mcps?
Section 61.
1. Derive the expression (61.11a) for the real part of the impedance of a straight circular wire when the skin effect is weak.

2. Derive expressions (61.12) for the real and imaginary parts of the impedance for a circular straight wire when the skin effect is strong.  Hint:  See Section 34 Problem 1.

3. A small circular wire loop of radius a is located at the center of a much larger circular wire loop of radius b.  The larger loop carries an alternating current J = J0 Cos[t], where J0 and  are constants.  Find the emf induced in the small loop by the magnetic field generated from the current in the large loop.  Hint:  Use the Biot-Savart law.

Section 62.  Landau problems 1 and 2.
1. An LCR circuit consists of resistance R, inductance L, and capacitance C in series, and there is an emf in the circuit equal to o Cos[t].  Determine the real part of the current J and its phase (62.3).  Draw a phasor diagram including both J and E for positive phase angle.  What are the conditions on , L and C for which the phase is positive?  Sketch |J| vs  for L = C = c = 1 and describe the behavior. At what angular frequency  (in terms of R, C, L, and/or c) does the current have its maximum amplitude.

Section 63.  Landau problem 2,3
1. Derive Equation (63.8).

2. Derive the “substantial” derivative for the rate of change of B at point moving with velocity v. 

3. A conductor rotates in a uniform constant magnetic field B with angular velocity .  A volume element of that conductor has a linear velocity v. Show how (B)v can be expressed in terms of the vectors and B only.  Show that (B)v = x B. 

4. Find an experimental example of unipolar induction and explain in terms of material in section 63.

5. Design an experiment to demonstrated unipolar induction.

6. Find the expression for the emf of unipolar induction from Landau Problem 2 in SI units.  Hints:  The effective electric field is different.  So are the fields of the polarized sphere and the relation between B, H, and M.

