
ED1 Problems 

Section 1.   

1. See A. A. Michelson, Am. J. Sci. 122, 120-129 (1881).  What fraction of the 

wavelength of yellow light was he trying to measure and how would this show 

whether or not there was ether?  What was the upper bound on interference-fringe 

shift determined from his measurements? 

2. Summarize Ch. Eisele, A. Yu. Nevsky, and S. Schiller, “Laboratory Test of the 

Isotropy of Light Propagation at the 10-17 Level, Phys. Rev. Lett. 103, 090401 

(2009) in one page. 

3. Classical principle of relativity and free particles.  Let K be an inertial reference 

frame.  (a) Suppose a frame K’ moves with constant velocity relative to K.  

Consider a free particle and use Gallileo’s velocity addition rule to show that K’ is 

also an inertial reference frame.   (b) Conversely, if K’ is an inertial frame, show 

that it moves at constant velocity with respect to K.  

4. Classical principle of relativity and collisions.  In inertial frame K, particle A 

(mass mA and velocity vA) hits particle B (mB, vB).  Some mass dm rubs off A 

onto B, leaving particles C (mC, vC) and D (mD, vD).  Assume momentum and 

energy conservation hold in frame K.  Frame K’ moves relative to K at velocity 

V.  (a) Use Gallileo’s velocity addition rule to show that momentum is also 

conserved in K’.  What must you assume about the total mass?  (b)  Suppose the 

collision is elastic in K.  Show that it is also elastic in K’. 

5. Show that the apparent speed of a star across the sky can exceed c.  With what 

angle to the line of sight should the star move to give the maximum apparent 

speed? 

 

Section 2. 

1. Draw a space-time diagram representing a game of catch for two people at rest 10 

m apart, i.e. sketch the world line of the ball.  Indicate also the light cone on the 

graph (need not be to scale).  

2. Event A happens at (ct,x,y,z)=(15,5,3,0); event B at (5,10,8,0); both in the K 

system. 

a. What is the interval between the two events?  

b. Is there an inertial system K’ in which they occur simultaneously?  If so 

what is its velocity vector relative to K?  

c. Is there an inertial system K’ in which they occur at the same spatial 

position?  If so, what is its velocity vector relative to K? 

3. Two observers K and K’ observe two events, A and B.  The observers have a 

constant relative speed of 0.8 c.  In units such that the speed of light is 1, observer 

K obtained the following coordinates:  Event A, (x,y,z,t)=(3,3,3,3); Event B, 

(5,3,1,5).  What is the space-time interval between these two events as measured 

by observer K’?  Is it space-like or time-like? Can Event A have caused Event B? 

4. Find a translation of the original work by H. Minkowski that introduced four-

dimensional geometry.  Hint:  Look in Principle of Relativity: A Collection of 

Original Memoirs on the Special and General Theory of Relativity, by H A 

Lorentz, Albert Einstein, H Minkowski, Herman Weyl for the citation. Are there 



any obvious differences between Minkowski’s original presentation and the 

distilled version that appears in Landau & Lifshitz?  

 

Section 3. 

1. The mean lifetime of muons = 2 s in their rest frame. Muons are generated in the 

upper atmosphere as cosmic ray secondaries.  (a) Calculate the mean distance 

traveled by muons with speed 0.99 c assuming classical physics (c=infinity). (b) 

Calculate the mean distance using special relativity.  (c) What percentage of 

muons produced at an altitude of 10 km reach the ground assuming they travel 

straight down at 0.99 c. 

2. In a laboratory experiment a muon is observed to travel 800 m before 

disintegrating.  A student looks up the muon lifetime (2 s) and concludes that its 

speed was 4 x 108 m/s, which exceeds c.  Identify the error, and find the actual 

speed of the muon. 

3. A rocket leaves earth at speed 3c/5.  When a clock on the rocket says 1 hour has 

elapsed, the rocket ship sends a light signal back to earth. According to earth 

clocks, when was the signal sent?  According to earth clocks, how long after the 

rocket left did the signal arrive back on earth?  According to the rocket observer, 

how long after the rocket left did the signal arrive back on earth? 

4. A muon is traveling through the lab at 3c/5.  How long does it last if its lifetime in 

its own rest frame is 2 s? 

5. Tau leptons are observed to have an average half-life of t1 in the frame S1 in 

which the leptons are at rest.  In an inertial frame S2, which is moving at a speed 

v12 relative to S1, the leptons are observed to have an average half-life of t2.  In 

another inertial reference frame S3, which is moving at a speed v13 relative to S1 

and v23 relative to S2, the leptons have an observed half-life of t3.  Which of the 

following is a correct relationship among two of the half-lives, t1, t2, and t3?  

A) t2=t1Sqrt[1-v12
2/c2]; B) t1=t3Sqrt[1-v13

2/c2];C) t2=t3Sqrt[1-v23
2/c2]; 

D)t3=t2Sqrt[1-v23
2/c2]; E)t1=t2Sqrt[1-v23

2/c2]; 

6. GPS satellites orbit the earth with a speed of 14000 km/hr relative to fixed 

positions on earth.  Is this a relativistic speed?  By how much do clocks on the 

satellites lag behind clocks on earth per day?  If the timing of signals from the 

satellites received by an earth receiver must have 20 ns precision to determine 

position within 5 meters, can special relativity be ignored? How long before the 

difference in time measurements would exceed the required precision? 

 

Section 4. 

1. Inertial system K’ moves at constant velocity V = V Cos[] x^ + V Sin[] y^ 

with respect to inertial system K.  The axes of the K and K’ systems are parallel.  

Their origins coincide at t = t’ = 0.  For convenience, use abbreviations  = V/c 

and  = 1/Sqrt[1-].  Find the Lorentz transformation matrix , i.e. find  such 

that (ct,x,y,z) = (ct’, x’, y’, z’). 

2. Show that the Galileo transformation does not leave the interval between events 

invariant? Show that the Lorentz transform leaves (ct)2-x2 unchanged. 



3. Which of the following represents a Lorentz transformation, assuming c=1? 

(x’,y’,z’,t’)= A) (4x, y, z, t/4); B) (x - 3t/4, y, z, t); C) (5x/4 - 3t/4, y, z, 5t/4-3x/4); 

D) (5x/4 – 3t/4, y, z, 3t/4 – 5x/4), E) None of the above. 

4. A bus of rest length 5 m passes through a garage of rest length 4 m.  Due to 

Lorentz contraction, the bus is only 3 meters long in the garage’s rest frame.  

What is the velocity of the bus in the garage’s rest frame?  What is the length of 

the garage in the bus’s rest frame?   

5. The coordinate systems K1 and K2 move along the X-axis of a reference 

coordinate frame K, with velocities v1 and v2 respectively, referred to K.  The 

time measured in K for the hand of a clock in K1 to go around once is t.  What is 

the time interval t2 measured in K2 for the hand to go around, in terms of t, v1, v2, 

and c.  (Hint:  The time dilation formula approach is messy since the velocity of 

K2 relative to K1 is not simply equal to v2-v1.   Use Lorentz transformation 

formulas instead.) 

6. A bar lies along the X’ axis and is stationary in the K’ system.  Show that if the 

positions of its ends are observed in K at instants which are simultaneous in K’, 

its length deduced from these observations will be greater than its length in K’ by 

a factor (1-V2/c2)-1/2. 

7. Sophie feels a pain at the same instant her brother, located 500 km away to the 

West, hits his thumb with a hammer.  A pilot in an airplane traveling at 12c/13 to 

the East observes both events.  Which event occurred first according to the pilot?  

How much earlier was it in seconds?  Could hammer blow have caused Sophie’s 

pain?   

 

 

Section 5. 

1. Show that the sum of two velocities, each smaller than c, is also smaller than 

c. 

2. For V<<c, verify expression (5.3) for the transformation of the velocity vector 

and the equations preceding it.   

3. Derive the expression (5.4) for the change in the direction of the velocity on 

transforming from one reference system to another.   

4. Derive the formula for the aberration of light (5.7) and the formula that 

precedes it.  

5. A 0 meson (rest-mass energy 135 MeV) is moving with velocity 0.8 c in the 

z direction in the laboratory rest frame when it decays into two photons, 1 and 

2.  In the 0rest frame, 1 is emitted forward and 2 is emitted backward 

relative to the 0 direction of flight.  What is the velocity of 2 in the 

laboratory rest frame? 

6. In the frame K, at t = 1, a particle leaves the origin O and moves with constant 

velocity in the XY-plane having components vx = 5c/6, vy = c/3.  What are the 

coordinates (x,y) of the particle at any later time t?  If the velocity of K’ 

relative to K is V = 3c/5, calculate the coordinates (x’, y’) of the particle at 

time t’ in K’ and deduce that the closest approach of the particle to O’ occurs 

at time t’ = 220/113.  Origins of K and K’ coincide at t = t’ = 0. 



7. Obtain the transformation equations for the acceleration a by differentiating 

the transformation equations for v.  

8. A nucleus is moving with speed 3c/5.  It emits a -particle in a direction 

perpendicular to the line of motion of the nucleus as observed from the 

reference frame of the nucleus.  The speed of the -particle in this frame is 

3c/4.  Find the velocity and direction of motion of the -particle as seen by a 

stationary observer in the lab frame. 

9. A luminous disk of radius a has its center fixed at the point (x’,0,0) of the K’-

frame, which moves at speed V along the common X,X’ axes relative to the 

K-frame.  The plane of the disk is perpendicular to the X’-axis.  It is observed 

from the origin of the K-frame, at the instant the origins of K and K’ coincide, 

that the disk subtends an angle 2.  If a<<x’, show that tan = tan’ Sqrt[(c-

V)/(c+V)].  If the disk is moving away from the K observer, does the disk 

appear larger or smaller than to the K’ observer?  What if the disk is moving 

toward the K observer? 

10. Atoms at rest emit photons isotropically.  For an observer watching a beam of 

atoms moving at speed 0.9 c relative to the lab, does the emission appear 

isotropic to an observer in the lab?  For photons emitted at angles 

0,30,60,90,120,150,180 in the reference frame of the atoms, what angles of 

emission does the observer see?  Describe qualitatively and draw the 

distribution of emission.  Will atoms appear brighter as they approach or 

recede from the observer? 

11. What is the percent error introduced when you use the Galileo, instead of the 

Einstein, velocity addition rule?  What is the numerical error if vx = 5 mi/hr 

and V = 60 mi/hr? 

12. Suppose you could run at half the speed of light down the corridor of a train 

going three-quarters the speed of light.  What would your speed be relative to 

the ground? 

13. A bank robber’s getaway car travels 3c/4 relative to the ground, and the police 

car pursuing him only c/2.  So the policeman fires a bullet after the robber, 

and the bullet has a muzzle velocity relative to the gun of c/3.  Does the bullet 

reach its target (a) according to Galileo? (b) according to Einstein? 

  

Section 6.  Landau problems 6.1 and 6.2 in book. 

1. Prove that the symmetry (or antisymmetry) of a tensor is preserved by Lorentz 

transformation. 

2. Use the e tensor method to prove the product rule                                                             

 x (fA) = f( x A) – A x  (f), where f is a scalar function of coordinates and A 

is a vector function of coordinates. 

3. Consider an integral over a surface in 3-space.  Let the vectors dr = [dx, 0, 0] and 

dr’ = [0, dy, 0] define an area element.    

a. Find the tensor df that gives the projections of the area element on the 

xx planes.   

b. What is the projection of the area element on the x1x2 = xy plane?  On the 

x1x3 plane?   



c. Find the vector df that is dual to df.  What is its magnitude and 

direction relative to the area element? 

4. Consider a volume element determined by the vectors dr=dx x, dr’=dy y, dr”=dz 

z.  Show that the determinant of 3rd rank formed from the components of these 

vectors gives the volume of the parallelepiped spanned by these vectors. 

5. Show that the Lorentz transform leaves the 4-D volume element unchanged.  

6. Show that (1/2) (dSi Aik/xk – dSk Aik/xi) = dSi Aik/xk, where Aik is 

antisymmetric. 

7. Show that dfki Ai/ xk = (1/2) dfik (Ak/ xi - Ai/ xk), which is analogous to the 

(surface element * Curl) expression in Stokes theorem. 

8. Show that in 2D, the general orthogonal transformation as matrix A given by 

{{cos, sin}, {-sin, cos}}.  Verify that det[A] = 1 and that the transpose of A 

equals its inverse.  Let Tij be a tensor in this space.  Write down in full the 

transformation equations for all its components and deduce that Tii is an invariant. 

9. Aijk is a tensor, all of whose components are zero, except for A111 = A222 = 1, A212 

= -2.  Calculate the components of the vector Aiji.  A necessary condition for a 

transformation to be orthogonal is that its determinant = 1 and that its transpose 

equals its inverse.  Show that the transformation x’1 = (1/7) (-3 x1 – 6 x2 – 2 x3), 

x’2 = (1/7) (-2 x1 + 3 x2 – 6 x3), (1/7) (6 x1 – 2 x2 – 3 x3) has these properties.  

Calculate component A’123 in the x’-frame.  If Bij is a tensor whose components in 

the x’ frame all vanish except B’13 = 1, calculate B12. 

10. Show that the components of the metric tensor are the same in all coordinate 

systems.  Hint:  See L&L Problem 1.   

11. Covariant and contravariant vectors exist already in 3D, though there is usually no 

distinction except in oblique (non-orthogonal) coordinates or in curved space.  A 

linear transformation of the coordinates such as a rotation transforms the 

components of a vector according to A’i = aijAj, where aij is the cosine of the 

angle between the x’i and xj axes.    (a) Show using the chain rule that, for the 

differential displacement vector dr, aij = x’i/xj.  Vectors that transform 

according to these coefficients are called contravariant.  A scalar function has the 

same value in any coordinate system,  = (x,y,z) = (x’,y’,z’) = ’.  The gradient 

of  is a vector.  (b) Show that the components ’/x’i of this gradient transform 

according to differently-defined coefficients bij =  xj /x’i.   Vectors that 

transform according to these coefficients are called covariant.  (c) Show that for a 

rotation in cartesian coordinates, aij = bij, i.e. there is no difference between 

covariant and contravariant transformations of cartesian coordinates in 3D.   

12. Show that if the components of any 4-tensor of any rank vanish in one inertial 

frame K’, then the components of that tensor are also zero in any other inertial 

reference frame. 

13. Consider an isotropic 4-tensor Aik.  By considering first the effect of rotations by 

90o about the spatial coordinate axes, then a general Lorentz transformation, show 

that Ai
k, is proportional to i

k. 

14. The components of a 4-tensor Aij are equal to the corresponding components of a 

4-tensor Bij in one particular inertial reference frame K.  Are they still equal in 

any different inertial frame K’?  



15. Tiklm is antisymmetric with respect to all pairs of indices.  How many independent 

components does it have in 4 space? 

 

Section 7. 

1. A car travels along a 45 deg line in K at speed v = 2c/Sqrt[5].   

a. Find components of ordinary velocity vector v.   

b. Find components of the 4 velocity ui.  

c. System K’ moves in the X direction at speed V=Sqrt[2/5]c relative to K.  

Use the velocity transformation law to find the velocity of the car in K’, 

i.e. find v’.   

d. Find u’i for the car in K’ using the Lorentz transform for 4 vectors.  Check 

that the result agrees with Eq. (7.2). 

2. Consider a particle in hyperbolic motion, x[t] = Sqrt[b2 + (ct)2], y=z=0.  Find the 

proper time t’ for the particle as a function of t, assuming the clocks are 

synchronized at t=t’=0.  Find x and v (ordinary velocity) as functions of t’.  Find 

the 4-velocity as a function of t. 

3. From the transformation properties of the four-velocity of a particle, derive the 

transformation equations for the components of its ordinary three-dimensional 

velocity (5.1). 

4. Find expressions for the 4-acceleration wi = (w0,w) in terms of the 3-D velocity v 

and 3-D accelerations dv/dt.  What are the dimensions of the 4-acceleration? 

 

Section 8 

1. From its relativistic Lagrangian, determine a free particle’s equation of motion.  

 

Section 9 

1. Derive the relativistic Newton’s 2nd law (9.2) in the case that the force acting on a 

particle is perpendicular to its velocity. Derive the relativistic Newton’s 2nd law in 

the case that the force is parallel to the velocity (9.3).  Show that each expression 

is a special case of f = (m/(1-v2/c2)) dv/dt + (fv) v/c2.   

2. If a particle with non-zero mass is ultra relativistic, show that its momentum is 

approximately its total energy divided by c. 

3. Derive the expression (9.18) for the force 4-vector in terms of the usual 3-D force 

vector.  

4. A monoenergetic beam consists of unstable particles with total energies 100 times 

their rest energy.  If the particles have rest mass m, their momentum is most 

nearly A) mc; B) 10 mc; C) 70 mc; D) 100 mc; E) 104 mc. Explain. 

5. A free electron (rest mass me = 0.5 MeV/c2) has a total energy of 1.5 MeV.  What 

is its momentum in units of MeV/c? 

6. A positive kaon (K+) has a rest mass of 494 MeV/c2, whereas a proton has a rest 

mass of 938 MeV/c2.  If a kaon has a total energy that is equal to the proton rest 

energy, what is the speed of the kaon in units of c? 

7. If a particle’s kinetic energy is n times its rest energy, what is its speed?   

8. A fast charge e enters the space between the plates of a parallel plate capacitor at 

an angle  (see figure) at time t = 0 and at point y = x = 0.  (a) What is the electric 

field vector between the plates in terms of the given parameters?  (b) Solve the 



equations of motion for the relativistic momentum components for t > 0.   (c) Find 

an expression for the kinetic energy kin as a function of time and initial kinetic 

energy 0.  (Hint:  Use a relation between kin and p).  (d) Find an expression for 

the velocity components as a function of time. (Hint: use a relation between kin, 

p, and v.)  (e) Find the parametric expressions for x(t) and y(t).   Plot the 

trajectory in the x,y plane. 

V 

0 volts 

D 



y^ 

 
9. Consider the momentum 4-vector pi = (/c, p).  If p’ = p = 0 in two inertial frames 

K’ and K, show that  = 0 in all inertial reference frames.  From this result show 

that if momentum is conserved in two reference frames, energy is conserved in all 

reference frames. 

10. If m is a particle’s rest mass, f the ordinary 3D force vector, v the ordinary 3D 

velocity vector of the particle, and  the relativistic kinetic energy, show that v.f = 

d/dt.  Hint:  Use equations (9.13,17,18) 

Section 15. 

1. A disk of radius R rotates at angular velocity w about its symmetry axis.  What is 

the ratio of the circumference to the diameter in terms of  and R according to an 

observer at rest.   

Section 16. 

1. Find the scalar and vector potentials of a point charge e moving at constant 

velocity V relative to the lab reference frame.  In its own reference frame, the 

potentials of the charge are ’=e/r’ and A’=0.  How would you solve for E and H 

in the lab frame? 

2. Find the scalar and vector potentials of a point electric dipole p moving at 

constant velocity V relative to the lab.  In its own reference frame, the potentials 

of the dipole are ’=pr’/r’3 and A’=0. Express answer in terms of the separation 

vector between the dipole and the field point in lab coordinates. 

3. An ideal magnetic dipole moment m is located at the origin of an inertial system 

K’ that moves with speed V in the X direction with respect to inertial system K.  

In K’ the vector potential is A’= (m x r’)/r’3, where r’ is the location of the field 

point in K’, and the scalar potential ’=0.  Find the scalar potential in the K 

system in terms of R, the instantaneous vector from m to the field point in the K 

system.  Let r be the location of the field point in K. 

 

Section 17. 



1. Derive the vector identity grad(a.b)=(a.)b + (b.)a + b x curl a + a x curl b 

using the e tensor method. 

2. Show that dkin/dt = v.(dp/dt). 

3. A laser pulse is represented by the four potential Ai = [0, 0, f(x-ct) 0], where the 

function f(x) approaches zero as x  .  The pulse hits an electron (-e, m, r0=0, 

v0=0).  (a) What are the equations of motion for the three components of v 

(assuming v <<c)?  (b) Show that vz(t) = 0.  (c) Show that vy(t) = (e/mc) f(x-ct), 

where x is the position of the electron at time t.  (d) Show that vx (1-vx/(2c))  vx 

= (e2/2 m2 c3) [f(x-ct)]2.  What is the sign of the net displacement along x?  Sketch 

a possible trajectory of the particle, y vs x, assuming the function f is a smooth 

positive function, like a Gaussian or a Lorentzian.  What happens at long times?    

4. Suppose AiA0 Sin[k x –  t], 0].  Find E and H. 

5. (a) Express the acceleration of a particle in terms of its velocity and the electric 

and magnetic field intensities. (b) What does this expression become to first order 

in (v/c)?  (c)  Suppose H=0, E=1 MV/m (which might be produced by a big van 

de Graaf generator), and the particle is an electron initially at rest.  How long does 

it take for the electron to reach a speed of (4/5) c as predicted by the exact 

relativistic expression and as predicted by the non-relativistic expression? 

 

Section 18. 

1. Show that the four potentials Ai = (e/r,0) and (0,-cetr/r3) give the same fields.  

Starting from the Lagrangian in terms of these potentials, show that the equation 

of motion for a charge in fields given by these potentials is the same in each case.   

2. The potentials for a point charge at the origin are usually given as Ai = (e/r, 0) in 

Gaussian units.  Make a gauge transformation with f = cet/r.  What are the new 

potentials?  Anything surprising, given that this is an electrostatic situation?  

What are the fields E and H calculated from the new potentials, and how do they 

relate to the fields from the old potentials? 

 

Section 19. 

1. Consider the vector potential A[r] = c x r / 2, where c is a constant vector.  What 

is the magnetic field? 

2. The vector potential for a spinning sphere (radius a, angular velocity ) with 

surface charge density  is (in SI units) A(r)  = (0 a/3) ( x r) for r<a and (0 

 a4/(3 r3)) ( x r) for r>a.  Calculate B(r) inside and out, sketch the field lines, 

and describe in words.  

3. An electron starts from rest and is accelerated through a region of space with a 1 

million volt potential drop.  After passing through this region, what is the 

electron’s velocity?  Compare results of classical and relativistic calculations.  

4. Suppose the 4-potential is Ai = (0,(A0 a/r) Exp[-r2/a2] e in cylindrical 

coordinates.  Calculate the fields E and H.  

5. The 4-potential of a finite uniformly charged wire, length = 2 l, =charge per unit 

length, is Ai=( Log[l + Sqrt[r2 + l2]/(-1 + Sqrt[r2+l2])], 0).  Find the fields E and 

H. 

6. Consider the image.  What is it?  (Hint: “1895”).  What particles are emitted by 

the cathode?  What is shown exiting the bulb?  At typical high voltage in modern 



versions of this device is 70 kV.  What is the maximum velocity of the particles 

that hit the anode?  Are they relativistic?  What is v/c exactly?  What is it 

classically?  What is the % difference? 

 
7. What particles are accelerated by the Cockroft-Walton machine from 1928 and 

used more recently as pre-accelerators?  If the maximum accelerating voltage is 

1.4 MV, what is the velocity these particles achieve?  Is it relativistic?  What is 

v/c exactly?  What is it classically?  What is the % difference? Explain how the 

Villard-cascade voltage multiplier consisting of a single transformer, diodes, and 

capacitors is used to achieve the necessary high voltage. 

 
8. The Van de Graff generator can charge its dome up to 7 MV and is used to 

accelerate ions.  Supposing these to be protons obtained by ionizing 
hydrogen gas, do they reach relativistic speeds?  What speeds do they 
reach?  What is v/c exactly?  What is v/c classically?  What is the % 
difference? 



  

 
 

9. The tandem van de Graff gives twice the energy to ions as does the simple van de 

Graff.  If the electrostatic potential achieved is 7 MV, what is the velocity that 

protons achieve.  What is v/c exactly?  What is v/c classically?  What is the % 

difference? 

 
 

10. In the linear particle accelerator (LINAC), the acceleration happens in the space 

between accelerating tubes, which are oppositely biased by being 180 deg out of 

phase in the applied AC.  By accelerating the particles in a series of small steps, 

high energies can be achieved without high voltages.  Particles travel at constant 

velocity inside the drift tubes.  How many sections are needed to achieve a final 



proton energy of 20 MeV if the amplitude of the 20 MHz applied AC is 500 kV?  

What is the length of the final tube, and how much longer is it than the one 

previous?   

 
 

11. An early Stanford LINAC accelerates electrons to 600 MeV.  What velocity do the 

electrons achieve? How many sections do we need now if the voltage amplitude is 

500 kV?  What is the length of the final tube, and how much longer is it than the 

previous one?  The more recent Stanford LINAC accelerates electrons to 50 BeV.  

What would be the most obvious design difference with the earlier one? 

 

Section 20. 

1. Assuming an electron starts from rest, how long does it take for it to become 

relativistic (say v = 0.9 c) in an E-field of 100 kV/m?  How far will the electron 

have traveled during this time?  (Hint: add constant of integration to assure initial 

condition is satisfied.)  How far would the electron have gone according to 

classical physics? 

2. Consider an electron starting from y = - infinity with momentum p0.  For y>0 it 

encounters a uniform electric field E = 100 kV/m ex.  Plot and compare exact and 

classical trajectories for p0 = 10 mc, mc, and mc/10 for distances traveled in the x 

direction for which vx remains below 0.9 c (see previous problem).  Comment on 

the differences in each case. 

3. A lens for focusing a beam of ions is shown in the figure.  It consists of a slit in a 

metal plate of thickness d.  The slit is long in comparison with its height y0.  It 

separates a region in which the electric field is E1 from a region in which the 

electric field is E2.  An ion beam originating from a focus at a distance x1 to the 

left of the lens is refocused at a distance x2 to the right, where x1 and x2 >> y0.  

The voltage through which the ions were accelerated before reaching the lens is 

V0 >>E1x1 and E2x2, which allows us to take the trajectory as a straight line 

except inside the slit.  Note that by symmetry, the transverse field is zero at the 

center of the slit y=0.  (a) Find the transverse electric field Ey near the center of 



the slit using div(E)=0 and approximating Ey as linear in y.   (b) Find the 

transverse force Fy acting on an ion of charge e that enters the slit at height y, 

determine the net impulse p given the ion, and find the deflection angle  = 

p/p.  (c) Show that for non-relativistic ions, 1/x1 + 1/x2 = (E2-E1)/2V0, which is a 

thin lens equation for ion beam focusing.   

 
Section 21. 

1. Consider a proton with kinetic energy 10 MeV (which does not include the 

proton's rest energy) in a magnetic field of 1 T.  Is the proton relativistic?  

Calculate the cyclotron frequency and the radius of the orbit.  Repeat the 

calculation for an electron with energy 50 GeV, such as are produced at CERN. 

2. A magnetic quadrupole field can be used as a focusing field for a charged particle 

beam.  The cross section of the pole faces is shown in the figure.  The pole faces 

are hyperbolas of the form xy = constant.  There are two north poles and two 

south poles, marked on the figure.  The dimension of the magnet perpendicular to 

the cross section is l.  The magnetic field in the region 0<z<l is H(x,y,z)=h(y ex + 

x ey), in which h > 0;  the field is 0 for z<0 and z>l.  Particles enter from negative 

z with velocity v0 = v0 ez and are deflected by the force F = (e/c) v0 x H.  Neglect 

the small components vx and vy in calculating the force.  (a) Sketch the H field 

lines in the xy plane.  (b) Explain qualitatively why H gives focusing in the x 

direction and defocusing in the y direction, assuming the beam particles are 

positively charged.  (c) Write the equations of motion for a beam particle with 

charge e and mass m, using the approximate force given above.  Solve for x as a 

function of z for z>0, assuming x=x0 and vx=0 at z = 0.  Sketch a graph of x (z). 
 

S N 

N S 

 
3. The figure shows the essential features of an early mass spectrograph of A. 

Dempster.  Singly positive ions enter the vacuum chamber vertically through the 

slit, after having been accelerated through a voltage of 20.0 kV. Their paths are 

bent by the magnetic field B and they are deposited a distance s from the slit on a 

photographic plate. (a) If s = 25 cm for ions of Samarium with mass number 150, 

i.e., 150Sm62, what is B? (b)What is the range of s for the stable isotopes of Sm, 

whose mass numbers range from 144 to 154? 

s 

B 

vacuum 

 



4. The magnetron is a vacuum-tube device that is used to generate ultra-high 

frequency currents in microwave sources, like microwave ovens or radar 

transmitters.  The frequency range is 109 Hz to 1011 Hz.  A schematic design for a 

magnetron is shown in the Figure. An electron bunch circulates in a constant 

magnetic field B, passing electrodes at opposite ends of a diameter of the orbit.  

The potential V at either electrode oscillates with the distance from the electron 

bunch.  (a) Determine the frequency of the alternating potential.  (b)  Determine B 

for a microwave frequency of 1010Hz. 

X B 

 
5. A beam of hydrogen isotopes enters a mass spectrometer.  The protons and 

deuterons have been accelerated from rest by a potential drop V0.  The radius of 

the proton orbit is 10 cm.  Calculate the radius of the deuteron orbit. 

6. The equations of motion of a charge e in a magnetic field H0 ez are dx/dt=vx, 

dy/dt=vy, dvx/dt=vy, dvy/dt=-vx where  = eH0/m in SI units. Solve the 

equations numerically on a computer. Set =1 and take initial values 

(x0,y0,v0x,v0y)=(1,0,0,1).  You might integrate the equations stepwise for a small 

time step. Or, more simply, use an analytic computer program with a built-in 

differential equation solver.  Plot the trajectory, i.e. x(t), y(t) as a function of t.  It 

should be a circle. 

7. The typical trajectory of a charged particle in a uniform magnetic field is 

cyclotron motion.  The magnetic force pointing toward the center F = e (v/c) H 

provides the centripetal force, but this does NOT equal m v2/R as in classical 

mechanics.  (a) What does it equal in terms of p, v, and R?  (b)Show that the 

classical expression is recovered when v<<c.  (c) Find the momentum p in terms 

of e, H and R.  (d) How does it compare to the classical expression? 

8. An ion moves in a helical path around the axis of a long solenoid wound so that 

the ion encounters a region in which the field intensity increases gradually from 

H1 to H2.  Derive the condition that the ion will be reflected somewhere in terms 

of H1, H2, and the longitudinal and transverse momentum components. 

9. Determine the frequency of vibration of a charged spatial oscillator, placed in a 

constant uniform magnetic field; the proper frequency of vibration of the 

oscillator (in the absense of the field) is 0.  Estimate the change (absolute and 

relative) in the vibrational frequency of the CO2 molecule (2350 cm-1) due to a 

magnetic field of 1 T.  (In S.I. units the cyclotron frequency (21.8) becomes 

eB/m.)  What spectral resolving power / would be needed to observe your 

estimated shift, and is this available in commercial infrared spectrometers? 

10. The inner van Allen belt traps a lot of cosmic ray protons, and even some 

antiprotons, as discovered recently by the satellite-borne spectrometer PAMELA 

(see Physics Today Oct 2011).  Trapped protons have energies up to a few GeV.  

Is a 3 GeV proton relativistic?  The altitude of the inner van Allen belt is 

10000km at the equator.  What is the magnitude of the Earth’s magnetic field 

there if the field surface-field at the equator is 0.5 G (see section 44 for dipole 

field)? If the angle between the proton’s momentum and the local magnetic field 



lines at the equator is close to 90 deg, what is the frequency of the helical motion 

in Hz for a 3 GeV proton?  What is the radius of the helical motion?  What is the 

radius for a 1 GeV proton?  PAMELA accesses the inner van Allen belt only near 

the magnetic pole at an altitude of ~600 km.  What is the magnetic field there?  

What is the radius of helical motion in this region for 1 GeV protons?  Describe 

qualitatively the nature of the proton motion over long times. 

 
11. A proton of velocity 107 m/s is projected at right angles to a uniform magnetic 

induction field B of 0.1 T.  How much is the particle path deflected from a 

straight line after it has traversed a distance of 1 cm?  How long does it take for 

the proton to traverse a 90 deg arc? 

12. See Post’s 1958 paper on the pyrotron.  The adiabatic invariant is stated to be the 

magnetic moment associated with the circular motion of the particle.  Post 

considers non-relativistic motion.  (a) From these considerations derive Post’s Eq. 

(1).  (b)  Show that Eq (21.9) in LL2, if v << c, gives the invariance of the 

magnetic moment that Post claims.  (c)  Derive Post’s Eq. (3). 

 

 

Section 22. 

1. (a)Use a computer program to plot the cycloid curve in the xy plane given by x = 

t-Sin[t], y = 1-Cos[t].  (b) For a charge e moving in orthogonal E and H fields, 

starting from rest at the origin, plot the kinetic energy as a function of time.  (c) 

Plot also modified functions as in (a) that give trochoid curves as in section 22, 

Fig. 6 a&b. 

2. The experiment by which Thomson discovered the electron consisted of a cathode 

ray passing between parallel capacitor plates in a uniform magnetic field.  The 

electrons travel parallel to the plates and B is perpendicular to both E and v.  

Derive the condition (in S.I. units) relating the potential difference V0 between the 

plates and the magnetic field strength, along with any other relevant parameters, 

such that the cathode ray is undeflected, assuming the cathode ray is a beam of 

electrons.  This is the principle of the velocity selector in a mass spectrometer.  A 

Bainbridge mass spectrometer includes a velocity selector in the vacuum chamber 

through which the positive ions pass. The selector uses a horizontal E-field and 

the same B field that bends the path of the ions in the spectrograph proper.  What 

is the mass of the ions that impinge on the photographic plate a distance s from 

the slit?  

3. The equations of motion (SI units) of a charge e in crossed electric and magnetic 

fields E0 ey and B0 ez for motion with vz=0 are dx/dt=vx, dy/dt=vy, dx/dt=vy, 

dvy/dt=a-vx, where =e B0/m and a = e E0/m.  Solve the equations numerically 

on a computer.  For illustration purposes choose units with =1 and a=1.  If the 

particle starts at rest at the origin the trajectory is a cycloid.  Explore what 



happens for different initial values of v0x, both positive and negative, keeping 

v0y=0.  Explain why if v0x = 1 (in these units) the particle moves in a straight line. 

4. (This is Landau problem 1.) Determine the relativistic motion of a charge in 

parallel uniform electric and magnetic fields.  Sketch the motion and discuss 

qualitatively.  (This is the configuration of fields and characteristic motion of 

relativistic electrons in a vacuum gyrotron, a high power microwave source.)  

 

Section 23 

1. Determine the components of the electromagnetic field tensor from its definition 

Eq. (23.3). 

2. Show that the space components for the equation of motion (23.4) give the 

relativistic Lorentz force law.  Show that the time component of the equation of 

motion (23.4) gives the work equation.   

3. Find the tensor Fik  (1/2) eiklmFlm that is dual to the electromagnetic field tensor 

Fik. 

4. Show that uiFi
kuk = 0.   

5. Complete the entries in the electromagnetic field tensor below.  What scalar is 

found from the product of the electromagnetic field tensor with itself, i.e. FikFik=?  

How does this change when one changes between different inertial reference 

frames? 

0 -Ex -Ey -Ez  

Fik  =               -Hz Hy      

   -Hx   

   

 

6. Determine the relationship between the Lorentz force law and the energy 

equation, starting from the 4-D equation of motion. 

 

Section 24 

1. Derive the Lorentz transforms for the components of E and H equations 

(24.2) and (24.3).  What are the Lorentz transformations of the fields in SI 

units?  Verify their vector form (24.4) when V<<c.   

2. Derive the relation (24.5) between H and E when H’ = 0 in the K’ system.  

Derive the relation (24.6) between E and H when E’ = 0 in the K’ system. 

3. Show that if E  H are perpendicular in some system K and E>H, that there 

exists a system K’ where the field is purely electric and the velocity of that 

system relative to K satisfies VE, VH, and V=cH/E.  Show that if EH in 

some system K, and E<H, there exists a system K’ where the field is pure 

magnetic, with VE, VH, and V=cE/H. 

4. An observer at rest in inertial frame K finds himself to be in an electric field E 

= (0,E,0) with no magnetic field.  An observer in K’ moving along the 

common X, X’ axes with speed V finds electric and magnetic fields E’ and 

H’.  Find these fields and show that H’ = (-1/c) V x E’, which is (24.5) with 

V-V. 

5. Two large non-conducting parallel plates, separated by a distance d and 

oriented perpendicular to the Z axis move together along the X axis with 



velocity V, which is not necessarily small compared with c.  The upper and 

lower plates have uniform surface charge densities + and – respectively in 

the rest frame K’ of the plates.  Find the magnitude and direction of the 

electric and magnetic fields between the plates according to an observer in the 

lab frame K (neglecting edge effects).  

6. In the lab, an electron moves with constant velocity v in crossed E and H 

fields.  What are the fields and force on the electron in its rest frame? 

 

Section 25 

1. What scalar is found from the product of the electromagnetic field tensor with 

itself, i.e. FikFik=? 

2. Show that the product of the electromagnetic field tensor Flm with its dual (1/2) 

eiklmFik is a 4-divergence. 

3. What pseudoscalar is found from the product of the electromagnetic field tensor 

with its dual tensor, i.e.  F*lm Flm=? 

4. Derive the Lorentz transform for the complex vector F = E + iH in the form 

(25.6). 

5. The axes of frame K’ are aligned with those of frame K.  K’ moves with respect 

to K along the common X,X’ axis with speed V.  In K there is a uniform electric 

field E=[0,E,0] and a uniform magnetic field H=[0,0,H].  Show that it is possible 

to choose H so that the field in K’ is entirely magnetic with magnitude (H2-E2).  

What is the direction of H’ in K’?  What is the relation between the chosen H 

value and the values of E & V? 

6. Determine the velocity of the system of reference in which the electric field E and 

magnetic field H are parallel.  In the lab you connect a battery to some parallel 

plates, then stick these between the poles of a magnet, such that the field strengths 

are E=1V/cm and B=0.1 T, while the field vectors are at 30 degrees with respect 

to each other.  How fast do you have to run to make the fields appear parallel to 

you?  (To convert your formula from the first part to SI units, make the 

substitution HcB.) 

7. Show that the equation F = E + i H = a n, where E and H are given, a is complex, 

and n is a complex unit vector, gives 8 equations for 8 unknowns.   

8. If  = F = E + i H = a n = (a’ + i a”)(n’ + i n”), and by choice of coordinates n is 

real, show that E and H are parallel. 

 

Section 26.   

1. (a) Show from the definition of the electromagnetic field tensor that Zikl  Fik/xl 

+ Fkl/xi + Fli/xk = 0.  (b) Show that Zikl is antisymmetric in all three indices.  

(c) Show that Zikl is non-zero only when all three indices are different.  (d) What 4 

equations for E and H components are obtained by setting i=0,1,2,3 in Zikl=0?  (e) 

The 4-vector eiklmFlm/xk = 0 is dual to the rank 3 tensor Zikl = 0 and gives the 

same Maxwell equations (26.1) and (26.2), i.e. the first two Maxwell equations. 

Find the equation results from setting i=1.   

2. There is a time dependent current Is(t) in a long and densely wound solenoid.  (a) 

Determine the electric field at radius r on the midplane of the solenoid, both 

inside and outside the solenoid. (Hint: The direction of E is azimuthal; use the 



Amperian loop trick.)  (b) From your result of (a) calculate the curl of E at radius 

r.   

3. A long straight wire carries an alternating current I(t) = I0 Cos[t].  Nearby is a 

square loop.  The wire lies in the plane of the loop, parallel to two sides of the 

square, which are at distances a and b from the wire. (The side of the square is b-

a.)  Determine the current induced in the square loop if its resistance is R.   

4. A circular loop of wire with radius a and electrical resistance R lies in the xy 

plane.  A uniform magnetic field is turned on at time t=0; for t > 0 the field is 

H(t)=(H0/Sqrt[2]) (ey+ez) (1-Exp[- t]).  (a) Determine the current I(t) induced in 

the loop.  (b) Sketch a graph of I(t) versus t. 

5. A metal disk of radius a, thickness d, and conductivity  is located in the xy 

plane, centered at the origin.  J= E.  There is a time dependent uniform magnetic 

field B(t)=B(t) ez.  Determine the induced current density J(x,t) in the disk. 

 

Section 27 

1. The Lagrangian for a system of particles is the sum of individual Lagrangians: 

L=a La.  If particles are replaced by mass and charge densities, then the 

Lagrangian is replaced by an integral over Lagrangian density, L(t) = (r,t) d3r.  

The trajectories of individual particles are replaced by the velocity field for the 

continuous matter filling the space.  Variation of trajectory is replaced by 

variation of velocity field.  This idea holds also for E-M fields.  Identify the 

Lagrangian density D for the E-M field.   

2. The action for the E-M field is S=(1/c)  D d, where d= the differential volume 

in 4-space, which is a Lorentz invariant scalar (see eq. 6.13).  S is also an 

invariant scalar (see section 8).  Therefore, D must be a scalar, and from section 

27 it must be quadratic in the fields.  We can form such a scalar from the 4-

potential and its derivatives as AiAi, FikFik, and (1/2) eiklmFlmFik.  What are these 

three scalars in terms of the potential or field components?  (The first and last 

terms are excluded from D.  Exclusion of the last term has two reasons:  It is a 

psuedoscalar, while both S and d are true scalars. And, it is a 4-divergence (see 

section 25 Problem 3), so when integrated it gives just a constant, which when 

varied gives zero.  Hence it contributes nothing when finding the field equations 

from Hamilton’s principle.)     

 

Section 28 

1. A solid sphere of radius a has total charge Q uniformly distributed throughout its 

volume.  The sphere rotates with angular velocity  =  ez.  Find the current 

density J(r).  Use spherical polar coordinates.   

2. Determine the Lorentz transformation of the charge density  and current density 

j.  If j’=0 but ’ is nonzero in frame K’, which moves at speed V relative to frame 

K, what are  and j in frame K?  Show that j=V.  Explain why  is greater than 

’. 

3. Why must the electron be a stable fundamental particle?  See G. Feinberg and M. 

Goldhaber, Proc. Natl Acad. Sci. USA 45, 1201 (1959).  Hint:  What particles are 

lighter than electrons and what are their charges? 

 



Section 29 

1. Show that setting the 4-divergence of current four vector equal to zero gives the 

equation of continuity. 

2. Show that due to charge conservation, the gauge transformation AiAi-f/xi has 

no effect on the equation of motion for a charge in given fields. 

 

Section 30 

1. A capacitor with circular parallel plates, with radius a and separation d, has 

potential difference V(t).  (a) Determine the magnetic field on the midplane of the 

capacitor, at radius r from the symmetry axis, for r>a, in terms of dV/dt, in both 

Gaussian and SI units.  (b) Show that H is the same as the field of a straight wire 

carrying current I=dQ/dt, where Q is the charge on the capacitor.   

2. Show that the discontinuity of B across a capacitor plate as the capacitor is being 

charged with current I is (in SI units) equal to 0 K x n where K = er I (1/r – r/a2) 

/(2).  Determine the surface charge density on the capacitor plates (assumed 

circular) as a function of time, and comment on the radial distribution of charge.   

3. Deduce the equation of continuity from the 2nd pair of Maxwell equations, both in 

3-D and 4-D form. 

4. A cylindrical non-magnetic wire, radius R, carries a uniform steady current I. 

Find H inside and outside the wire.  If the current is 30 kA, what is the field in T 

at a distance of 1 m? 

5. A long non-magnetic cylindrical conductor, inner radius a, outer radius b, carries 

a uniform current I.  Find the magnetic field H(r) inside the hollow space, within 

the conductor, and outside the conductor. 

6. Three straight, co-planar, infinitely long, equally spaced wires (with zero radius) 

each carry a current I in the same direction.  Calculate the location of the two 

zeros in the magnetic field. Sketch the magnetic field line pattern. 

 

Section 31 

1. Consider a capacitor with circular plates of radius a, which is charging with 

current I.  What is the energy flux density on the cylindrical surface of radius a 

that encloses the volume between the plates?  What direction is electromagnetic 

energy flowing through this mathematical surface?  What is the total rate at which 

field energy flows into the cylindrical volume?  Show that this equals the rate of 

change of the total electric field energy stored between the capacitor plates.   

2. Consider a segment of conducting wire that extends from z = 0 to z = l.  The 

power supplied to the moving charges in the dc current I, by the potential 

difference V0 from one end of the segment to the other, is P = I V0.  Show that 

this equals the electromagnetic power that flows in through the surface of the 

wire.   

3. Prove by using tensor methods that div(ExH) = H.curlE - E.curlH. 

4. If W is the energy density and S is the Poynting vector for an electromagnetic 

field, prove that c2W2 – S2 is invariant. 

 

Section 32. 

1. Show that  in (32.1) is the Lagrangian density. 



2. What are the three four-vectors dxi, dx’i, and dx’’i that span the hyperplane 

x0=constant? Show that dS1 = dS2 = dS3 = 0 when integrations are carried out over 

the hypersurface x0=const.  Show that T0kdSk = T00dV if the integration is 

carried out over the hyper surface x0=const. 

3. Consider the rank 3 tensor ikl=-ilk.  Show that 2iklxkxl = 0. Show that the 

definition of the energy-momentum tensor Tik (32.3) is not unique, i.e. one can 

always obtain another tensor T’ik by adding a term iklxl
 to Tik, such that T’ki 

also satisfies the conservation law (32.4).  Show that iklxl)dSk = (1/2) 

dSkiklxl – dSliklxk).  Show that T’ik gives the same momentum 4-vector, 

i.e. that the momentum 4-vector is uniquely determined even though the energy-

momentum tensor is not.  

 

Section 33. 

1. Show that the energy-momentum tensor for the electromagnetic field (33.1) is 

symmetric.  Show that the trace of the energy momentum tensor for the 

electromagnetic field is zero. 

2. Show that T00 is the electromagnetic energy density.  Show that cT are the 

components of the Poynting vector.  Derive the components of the Maxwell stress 

tensor. 

3. (a) If the electric and magnetic fields are parallel, or if the electric field is zero, or 

if the magnetic field is zero, when the field is parallel to the x axis, show that the 

energy-momentum tensor is diagonal with components W, -W, W, W, where W is 

the energy density.   

4. If the electric and magnetic field magnitudes are equal and the electric and 

magnetic fields are perpendicular (parallel to x and y axes, respectively), show 

that the non-zero components of the electromagnetic field tensor equal W and 

occur only in the “corners” of the matrix. 

5. (a) Show that for non-interacting paricles, T0= c2 u, where  = 1,2,3,  is the 

mass density, and ui is the velocity four-vector.  (b) Show that T = T =  c u 

u0 ds/dt.  (c) Use the physical interpretation of T00 to show it equals  c u0 u0 

ds/dt.  (d) Use the physical meaning of the Maxwell stress tensor to show that 

T=  c u u ds/dt, =1,2,3. 

6. Consider an infinite parallel-plate capacitor, with the lower plate (at z = -d/2) 

carrying the charge density –, and the upper plate (at z = +d/2) carrying the 

charge density +.  Determine all nine elements of the Maxwell stress tensor, in 

the region between the plates.  Display your answer as a 3 x 3 matrix.  Determine 

the force per unit area on the top plate.  What is the momentum per unit area, per 

unit time, crossing the xy plane?  At the plates this momentum is absorbed, and 

the plates recoil unless fixed by external force.  Find the recoil force per unit area 

on the top plate. 

7. Fill in the details in the derivation of (33.7) for the 4-div of the energy momentum 

tensor of the electromagnetic field and of (33.9) for the 4-div of the energy 

momentum tensor of the particles. 

8. Determine the net force on the northern hemisphere of a uniformly charged solid 

sphere of radius R and charge Q using the Maxwell stress tensor.   



9. Consider two equal point charges q, separated by a distance 2a.  Construct the 

plane equidistant from the two charges.  By integrating Maxwell’s stress tensor 

over this plane, determine the force of one charge on the other. Do the same for 

charges that are opposite in sign. 

10. A charged parallel-plate capacitor with uniform electric field E = E ez is placed in 

a uniform magnetic field H = H ex.  Find the electromagnetic momentum in the 

space between the plates.  Now a resistive wire is connected between the plates, 

along the z axis, so that the capacitor slowly discharges.  The current through the 

wire will experience a magnetic force; what is the total impulse p=Fdt delivered 

to the system during the discharge?  Instead of turning off the electric field, 

suppose we slowly reduce the magnetic field.  This will induce a Faraday electric 

field, which in turn exerts a force on the plates.  Show that the total impulse is 

again eqaual to the momentum originally stored in the fields.   

11. A uniform constant magnetic field H is directed along the z-axis of an inertial 

frame.  Find the energy momentum tensor in both Gaussian and S.I. units. 

 

Section 35 

1. A straight rod has cross-sectional area A and mass m per unit length.  It lies along 

the X-axis of an inertial frame in a state of tension F.  (a) Show that the energy-

momentum tensor has components which are the elements of a 4 x 4 diagonal 

matrix, with diagonal elements (mc2/A, -F/A, 0, 0). (b) Deduce that an observer 

moving along the X-axis with speed V observes an energy per unit length of the 

rod to be (mc2 – FV2/c2)/(1-V2/c2).  Deduce that F cannot exceed mc2.   

 

Section 36 

1. A long uniformly charged ribbon is located in the xz plane, parallel to the z axis, 

occupying the region –z and –a/2 x a/2.  The charge per unit area on the 

ribbon is .  Determine E at (x, 0, 0), where x > a/2.  What is the asymptotic field 

on the x axis?  Determine E at (0, y, 0), where y > 0 .  What is the asymptotic 

field on the y axis? 

2. A charge +q is at (0, 0, z0).  What is the electric field E(r)? 

3. Find the restrictions on C1 and C2 such that the function V(r,) = (C1 Cos2[] + 

C2)/r3 may be a potential function in a charge-free region of space. 

4. A semi-infinite wire lies on the negative z axis, from z = 0 to z = - , with 

constant linear charge density .  Determine E at a point (0, 0, z) on the positive z 

axis.  Determine E at a point (x, 0, 0) on the positive x axis. 

5. For any charge free region of space, prove the mean value theorem:  If S is the 

surface of a mathematical sphere whose interior contains no charge, then the 

potential at the center is equal to the average of the potential over the surface S. 

 

Section 37  

1. Calculate the energy per unit length for two long coaxial cylindrical shells, 

neglecting end effects.  The inner and outer cylinders have radii a and b, and 

linear charge densities  and –, uniformly distributed on the surface, 

respectively. 



2. Consider two charges separated by a distance a.  If E1 is the field of q1 and E2 is 

that of q2, find the interaction part U12 of the potential energy.    (Hint:  U12 

depends only on a, so without loss of generality let q1 be at the origin, and q2 on 

the z axis at z = a.) 

3. Find the electrostatic energy of a uniformly charged solid sphere with total charge 

Q and radius R.  Use the result to compute the electrostatic energy of an atomic 

nucleus (charge = Ze, radius = (1.2 x 10-15 m) A1/3] in MeV times Z2/A1/3.  

Calculate the change of electrostatic energy when a uranium nucleus (Z = 92, A = 

238) fissions into two equal fragments.   

4. Calculate the self-energy of a charged spherical surface, with total charge Q 

uniformly distributed on the surface, and radius R.  What is the physical 

significance of this result?  What is the limit of the self-energy as R0? 

5. Let us assume that an electron is a uniformly charged, spherical particle of radius 

R.    Determine the self energy of the distribution.  Assuming that the rest energy 

is electrostatic in origin, determine the "classical radius" R.  Calculate a value in 

meters and compare to the size of a typical nucleus.   

 

Section 38 

1. Complete the derivation of (38.6) for the electric field of a uniformly moving 

charge. 

2. For velocities v of a charged particle close to c, show that the half width at half 

maximum of the angular distribution of the electric field (38.8) is   0.8 (1-

v2/c2). 

3. Show that the fields of a moving charge satisfy Maxwell’s equations, apart from 

the singularity at r = [vt, 0, 0]. 

4. A proton at the origin exerts a force on the nucleus of a gold atom at rest on the z 

axis at z = 100 fm. (The atomic electrons are irrelevant.) Compute the force on the 

Au nucleus if the proton is (a) at rest, and (b) moving along the x axis with speed 

0.99 c.  Also, in the latter case, plot the magnitude of the force on the Au nucleus 

as a function of time.  In making the plot it is convenient to measure time in 

zeptoseconds (zs) where 1 zs = 10-21 s. Express the forces in MeV/fm.  (Neglect 

the motion of the heavy Au nucleus.) 

5. For a charge in uniform motion with velocity v, show that R*=R  (1-(v/c)2 

Sin2), where R is the vector from the present position of the charge to the field 

point and R.v = R v cos.  Plot a polar graph of |E| as a function of  for a fixed 

R, assuming v/c = 0.8. 

6. Determine the force (in the lab frame) between two charges moving with the same 

velocity V.  What is the ratio of transverse-to-longitudinal force?  Explain what 

happens to this ratio when the two charges lie on a line parallel to V or 

perpendicular to V? 

 

Section 40 

1. Complete the derivation (40.8) for the electric field of a dipole, i.e. take the 

necessary gradients.  Show that (40.8) and (40.9) are equivalent. 



2. Derive (40.10) and (40.11) for the Cartesian and spherical coordinate components 

of the electric dipole field in a plane passing through d. (My edition has a sign 

typo!).  

3. Three charged line segments, each with linear charge density , extend from the 

origin O to (a, 0, 0), from O to (0, b, 0), and from O to (0, 0, c).  Find the dipole 

moment of this charge distribution.  Find the first two terms in the multipole 

expansion of the potential on the z axis for z >> a,b,c.  What are the monopole 

and dipole contributions to E(0, 0, z) for z >> a, b, c? 

4. A point dipole p = p ez is at the origin.  At point P1 = (x1,0,0) there is a point 

charge e.  What is the force on this charge due to the field of the dipole?  What is 

the force on the dipole?  How much work is required to take the charge from P1 to 

infinity if the dipole remains fixed at the origin?  How much work is required to 

take the dipole from the origin to infinity if the charge remains fixed at P1?  What 

is the physics underlying the simple answers to these questions?   

5. A point dipole p = p ez is at the origin.  A point charge e is located at P2 = (x2, y2, 

z2).  How much work is required to move the charge?  What is the force on e 

when it is at P2? 

6. The dipole p = [p1, p2, p3] is located at the origin.  What is the potential in 

spherical coordinates?  What is the electric field in spherical coordinates? 

7. A point dipole p = p0 ez is at the origin.  A second dipole p = p0 ez is at (0, 0, z0).  

What is the force on the second dipole?  What is the interaction energy?  [Hint: 

The energy is the work required to bring the second dipole to (0, 0, z0) with the 

first dipole fixed.  Show that the energy is – p. E(0,0,z0). 

8. For a charge distribution with unequatl amounts of positive and negative charge, 

such as an ion, is the dipole moment vector necessarily directed along the line 

between positive and negative charge centers?   

 

Section 41 

1. Show that (XX(1/R0) = 3 XX/R0
5 - /R0

3.  Derive the form (41.6) for 

the quadrupole term of the potential starting from (41.5). 

2. Show that if Dxx = Dyy = -(1/2) Dzz = -(1/2) D holds for the components of the 

quadropole moment tensor, then the quadropole term of the potential has the form 

(41.8). 

3. If the total charge e = 0, and the dipole moment vector d = re = 0, show that 

the quadrupole moment tensor D is independent of the choice of origin. 

4. Derive the expression for the lth term (l) (41.12) in the expansion of the potential 

and the 2l-pole moment Qm
(l) (41.13) from the expansion (41.9) of 1/|R0-r| in 

spherical harmonics. 

5. Using a table of Ylm functions, derive the relations between 21-pole moment Q(1)
m 

and the components of the dipole moment d (41.14).  

6. A linear quadrupole consists of three charges: q, -2q, and q, on the z axis.  The 

positive charges are at z = a and the negative charge is at the origin.  Show that 

this system is the same as two dipoles, with dipole moments +q a ez and –q a ez, 

centered at z = +a/2 and z = -a/2, respectively.  Calculate the potential (r,) in 

spherical coordinates for r >> a.  Sketch the electric field lines in the xz plane.  

What is the quadrupole moment tensor for this charge distribution? 



7. Consider the electric quadrupole consisting of four charges in the xy plane: +q at 

(x,y) = (a,0), -q at (0, a), +q at (-a, 0), and –q at (0, -a).  Determine the electric 

potential on the x axis.  What is the asymptotic form of the potential (x,0,0)?  

Use computer graphics to make a log-log plot of  vs. x at verify the asymptotic 

behavior.  Determine the electric field on the x axis for x>>a.  Determine the 

electric field on the z axis. 

 

Section 42 

1. Show that [ (d.E)]r=0 = (d.)E0 for the force (42.5) on a system of charges in an 

external field when the net charge is zero. 

 

Section 43 

1. Using the Biot-Savart law, determine the magnetic field due to a current I in a 

long straight wire. 

2. Using the Biot-Savart law, determine the magnetic field due to a circular current 

loop, at an arbitrary point on the axis of symmetry. 

3. A square wire loop of size 2a x 2a lies in the xy plane with its center at the origin 

and sides parallel to the x and y axes.  A counterclockwise current I runs around 

the loop.  Find the magnetic field on the z axis.  Show that for z/a >> 1 the field 

becomes that of a magnetic dipole, and find the magnetic moment.  Compare the 

field at the center of this square loop with that at the center of a circular loop of 

diameter 2a.   

4. Consider a circular cylindrical solenoid of finite length L, radius a, with N turns of 

wire carrying current I0.  The current may be approximated by a surface current 

density K (=azimuthal current per unti length along the cylinder) equal to NI0/L.  

Caclulate the magnetic field on the axis of the cylinder halfway between the ends. 

(Hint subdivide the solenoid into infinitesimal current rings dI = Kdz’).  Calculate 

the magnetic field on the axis of the cylinder at either end.  Show that Bend/Bcenter 

approaches ½ as L/a 

5. Use index methods to show that x (f a) = f(x a) + (f) x a.  Show that ( 

(1/R)) x j = (j x R) /R3. 

 

Section 44 

1. Use index methods to show the identity (r x v) x R = (r.R)v – (v.R)r used to 

obtain (44.3).  Use index methods to derive the identity x (a x b) = (b.)a – 

(a.)b + a(.b) - b.a).  Use index methods to show that (R/R3) = 0Use 

index methods to show that (m.)(R/R3) = (m/R3) – 3R(m.R)/R5. 

2. A small circular loop carrying current I is in the xy plane with its center fixed at 

the origin.  The dipole moment is in the same direction as +ez. Sketch the 

magnetic field lines.  A second identical current loop is located on the x axis at 

some fixed distance d from the origin.  Assume the axis of the first loop is fixed in 

the z direction, but the second loop is free to rotate.  What is the equilibrium 

orientation of the second loop?  What is the direction of the second dipole 

moment in stable equilibrium?   

3. At the surface of the Earth the magnetic field is approximately the same as the 

field from a point dipole mE at the center of the Earth.  The dipole moment is mE 



= mE [sin0cos0, sin0sin0, cos0] where mE = 7.79 x 1022 A m2, and (0,0) = 

(169 deg, 109 deg).  The z axis is the Earth’s rotation axis and the x axis passes 

through the Prime Meridian on which Greenwich lies; positive  is to the east.  

Calculate the magnetic field H at a point on the earth with colatitude  and 

longitude .  Give the components of H to the north (-e), to the east (e), and 

vertical (er).  Calculate these components for Orlando, in Gauss. 

4. The planet Mercury has a dipole magnetic field like Earth’s.  In 2011, NASA’s 

messenger mission to Mercury discovered that Mercury’s dipole is displaced 400 

km to the north of center.  The radius of Mercury is 2440 km.  Do you think this 

displacement would be easy to detect?  What is the ratio of the fields on the 

surface at north and south magnetic poles?  What is the ratio at the altitude of 

Messenger’s closest approach (228 km)?  NASA’s website gives the surface-field 

ratio at Mercury’s geographic poles as 3.5.  Discuss any difference with your 

answer. 

 

Section 45 

1. What is the precession frequency for an electron in a magnetic field of 1 T? 

2. Proton spins in liquid water become partly polarized in an external B-field.  When 

the field is suddenly changed to a new direction perpendicular to the old, the 

original polarization precesses about the new magnetic field at the Larmor 

frequency and decays until a new polarization appears parallel to the new B 

direction.  The decay happens by interactions with processes that have the same 

frequency as the Larmor frequency.  (a)  When the Larmor frequency is ~4 kHz, 

thermal fluctuations are responsible for the decay.  What magnetic field does this 

correspond to?  (b) When the Larmor frequency is ~400 Hz, proton exchange 

between H3O+ and H2O, and between H2O and OH- is responsible for the 

relaxation.  What B does this correspond to?  See Phyiscs Today Oct 2011.   

3. Look up Marta Anguera Antonana PhD dissertation (UCF 2017).  Find the plot of 

ferromagnetic resonances for a tiny sample of Yttrium Iron Garnet at the center of 

a microwave strip line resonator.  Transmission of microwaves is reduced when 

the microwave frequency is resonant with the precession of the sample’s magnetic 

moment in an external magnetic field.  Do the data satisfy Larmor’s formula? 

 

Section 46 

1. Show that the second pair of Maxwell’s equations in vacuum (46.2) are 

equivalent to Fik/xk0. 

 

Section 47 

1. Show that if the direction of propagation of a plane wave is along X, then the only 

non-zero component of the Maxwell stress tensor is -xx = W.   

2. A field meter shows that the amplitude of the electric field oscillation in a certain 

radio wave is 5 millivolts per meter.  What is the amplitude of the magnetic field 

oscillation in T?  What is the intensity in W/m2? 

3. The electric field in an electromagnetic wave is E(y,t) = E0({-1,0,1}/2) Sin(ky-

t).  What is the magnetic field H?  What is the Poynting vector? 



4. Consider the fields E={F1,F2,F3} and H={G1,G2,G3}, where the Cartesian 

components of each field are all functions of (x-ct), so that they obviously satisfy 

Maxwell’s equations, and all components  0 as x  These fields correspond 

to a pulse of radiation moving in the +x direction.  Maxwell equations place 

severe restrictions on the components.  Show that we must have F1=G1=0, G3=F2, 

and G2=-F3, so that there are only two independent polarizations.  Suppose 

F2()=G3()=E0Exp(-2/a2) and the other components are 0.  ( stands for x-ct.)  

Make a sketch that shows a snapshot of the fields in space at time t.   

5. Show that the function f = C Cos[kz] Cos[kct] is a solution of the wave equation.  

Determine the functions f1 and f2 (see (47.2)) for this solution.  Explain what is 

meant by the statement that a standing wave is the superposition of traveling 

waves in opposite directions.  

 

Section 48  Landau & Lifshitz Problem 1. 

1. Show that the d’Alembertian operator 2/xixi- 2/c2t2.  Show that if 

A = A0 Exp[-i ki xi] in the four-dimensional wave equation that kiki=0 (48.14). 

2. Show (48.15) Tik = Wc2 kikk/2. 

3. Calculate S and W/t for a linearly polarized plane wave propagating in the z 

direction and polarized in the x direction, where S is the Poynting vector and W is 

the energy density.  Explain the significance of the relationship between these two 

results for a given volume in space. What is the relationship between the electric 

field and magnetic field energy densities? 

4. Polarized light is incident on a perfect polarizer, and it is observed that 20% of the 

light intensity gets through.  What is the angle between the polarizer axis and the 

polarization direction of the light? 

5. A polarized plane electromagnetic wave moves in the y direction, with the electric 

field in the x direction.  What is the direction of the magnetic field at a point 

where the electric field is in the – x direction?  

6. Consider a superposition of waves traveling in the z direction with fields 

E=Re[{E1,E2,0}ei(kz-t)] and H=Re[{-E2,E1,0} ei(kz-t)], where E1 = C1 ei and E2 = 

C2 ei with C1 and C2 real.  Calculate the time-averaged energy flux Savg.  

Suppose E1=C and E2=iC.  Describe in words and pictures the direction of E as a 

function of time, at a point on the xy plane.  Describe in words and pictures the 

direction E as a function of z for a snapshot of the field at t=0.  

7. The Lyman  spectral line emitted from hydrogen in a distant quasar is observed 

on earth to have a wavelength of 790 nm (near IR).  This spectral line in terrestrial 

hydrogen is 122 nm (UV). How fast is the quasar receding from earth? 

8. Two plane waves have the same frequency, wave vector and amplitude A, but 

opposite circular polarization.  What are the amplitude and polarization of their 

superposition?   

9. “Is there methane on Mars?” Kevin Zahnle, Richard S. Freedman, David C. 

Catling, Icarus 212 (2011) 493–503.  “The martian lines are displaced from the 

core of the corresponding terrestrial lines by exploiting the Doppler shift when 

Mars is approaching or receding from Earth. Relative velocities can exceed 17 

km/s. The Doppler shift for a relative velocity of 17 km/s is 0.17 cm-1 at 3000 cm-

1, which is enough to separate the centers of the martian and telluric lines, but not 



enough to remove the martian lines from the wings of the much broader terrestrial 

lines.”  Figure: Transmission through Earth’s atmosphere in the vicinity of the 3 

P4 methane lines. The wings of the P4 band are notably smooth. This makes the 

highest and lowest frequency lines of the four methane P4 lines relatively 

detectable when observed in blueshift or redshift, respectively. Doppler shifts of 

0.16 cm-1 are assumed here for the illustration.  Verify the expected shifts for 17 

km/s relative velocity. 

 
10. See the 1995 paper by Mayor & Queloz, which won them the 2019 Nobel Prize in 

Physics.  (a) Sketch the orbit of a planet and the wobble of its star about their CM 
and how this would appear to an observer.  (b)  Write the exact expression for 
the frequency of light coming from the star as a function of time in terms of the 
orbital period T and the speed V of the instantaneous inertial frame attached to 
the star.  (c)  Since V<<c, write the expression for the frequency in this limit and 

the change in frequency  about the proper frequency 0.  (d) What resolving 

power 0/ would a spectrometer need to detect the motion if V = 13 m/s?  
(e) Look up the solar spectrum of the sun.  How wide are the Balmer lines?  What 

resolving power 0/ is needed to resolve these?  How much smaller is the 
Doppler shift you calculated than is the Balmer linewidth?  Hats off to Mayor & 
Queloz! 

Section 49 

1. Show that if f = Sum[fn exp[- i 0 n t], {n, - (49.1), then fn = (1/T) Integral[ 

f(t) exp [i n 0 t], {t, -T/2, T/2}] (49.2). 

2. Show that the time average of purely periodic field <f>t = f0 = 0, starting from the 

expansion of this field (49.1).   

3. Show that for fields expandable in a continuous sequence of different frequencies 

(49.5) that the amplitude f of each contribution has the form (49.6).  Show that 

f = f*. 

4. The figure shows actual experimental data for the periodic emission intensity of a 

far-infrared p-Ge laser.  (Oscillations correspond to harmonics of the cavity round 

trip time, not the much faster THz frequency of the fields themselves.)  What are 



the fundamental period T and frequency 0 of the oscillations?  For the upper 

trace, estimate the relative amplitudes fn of all harmonics.   

 
Section 50 

1. Show that if the polarization tensor is related to the field components according to 

(50.5), then its determinant vanishes. 

2. For natural light show that the polarization tensor has the form  = (1/2)  

What is the determinant? 

3. Show that for a circular polarized wave, the symmetric part of the polarization 

tensor is (1/2) while the antisymmetric part is –(i/2)eA with A = 1. 

4. Show that the principal values of the symmetric part of the polarization tensor 

sum to one, i.e. 1+2=1. 

5. Show that if the coordinates are rotated about x by , so that y and z align with the 

principal axes of S, that S’ in the new coordinate system is diagonal. 

6. Derive (50.11). 

7. We measure Stokes parameter 1 using a linear polarizer oriented first at +45 deg 

to the y (vertical) axis and then at -45 deg, measuring the transmitted intensities 

J45 and J-45.  Show 1 = (J45 - J-45)/J = 2Re(yz) = [<EyEz*>t + EzEy
*>t]/J.  Using 

the latter expression, find 1 for (a) linear polarization along +45 deg; (b) linear 

polarization along -45 deg; (c) linear polarization along 0 deg; (d) Circular 

polarization (R or L)?  

8. We measure Stokes parameter 2 using a quarter wave plate (RHC light Ey = iEz 

goes to linear polarization at -45 deg Ey  = -Ez) followed by an analyzer (linear 

polarizer) oriented first at -45 deg to the y (vertical) axis and then at +45 deg, 

measuring the transmitted intensities J-45 and J+45.  Show 2 = (JRHC – JLHC)/J = 

2Im(yz) = -i[<EyEz*>t - <EzEy
*>t]/J.  Using the latter expression, find 2 for (a) 

circular polarization (R or L); (b) linear polarization along 0 deg; (c) linear 

polarization along +45 deg?  

9. We measure Stokes parameter 3 using a linear polarizer oriented first at +0 deg 

to the y (vertical) axis and then at 90 deg, measuring the transmitted intensities J0 

and J90.  Show 3 = (J0 – J90)/J = (yy - zz) = [<EyEy*>t - <EzEz
*>t]/J.  Using the 

latter expression, find3 for (a) linear polarization along 0 deg; (b) linear 

polarization along 90 deg; (c) linear polarization along 45 deg; (d) Circular 

polarization (R or L)?  



 

Section 62 

1. Show with  = (R/t)/R that the homogeneous d’Alembertian equation for  

reduces to 2/R2 – (1/c2) 2/t2 = 0. 

2. Suppose that at t=0 a current I is suddenly established in an infinite wire that lies 

on the z axis.  What are the resulting electric and magnetic fields?  Show that after 

a long time t>>r/c, the magnetic field is the same as the static field of a long wire 

with constant current I.  What is the electric field for t>>r/c? 

3. Confirm that the retarded potentials satisfy the Lorentz gauge conditions.  First 

show that (j/R) = (1/R)j + (1/R) j -  (j/R), where R = r-r’, denotes 

derivatives with respect to r, and  denotes derivatives with respect to r’.  Next, 

noting that j(r’, t-R/c) depends on r’ both explicitly and through R, whereas it 

depends on r only through R, confirm that j = - (j/ct)R) and j = -

(/t) - (j/ct)R).   Use this to calculate the divergence of A according to 

(62.10). 

4. Suppose an infinite straight wire carries a linearly increasing current I(t) = k t, for 

t > 0.  Find the E and H fields generated.   

5. Suppose an infinite straight wire carries a sudden burst of current I(t) = q0 (t).  

Find the E and H fields generated.   

6. A piece of wire bent into a loop, as shown in the figure with inner radius a and 

outer radius b, carries a current that increases linearly with time I(t) = k t.  

Calculate the retarded vector potential A and E-field at the origin.  Can the 

magnetic field be found from A? 

 
Section 63 

1. Derive the Lienard-Wiechert potentials, i.e. the retarded potentials of a point 

charge, (63.5) from the four dimensional expression (63.3).  Show that (63.2) 

results when v = 0.  Show that RkRk = 0 where Rk = [c(t - t’), r - r0(t’)]. 

2. Calculate the Poynting vector and energy density of the electromagnetic filed of a 

charged particle moving with constant velocity.  Show that the field energy is 

carried along with the particle.   

3. Find the dH field of a charge de moving uniformly with velocity v.  Letting v de = 

I dx, where I is the current in a long straight wire, integrate dH over the length of 

the wire.  Note that the result agrees with that obtained from Ampere’s law even 

for v/c1. 

4. Suppose the acceleration of a fast particle is in the same direction as its velocity.  

Show that the radiation is zero along the direction of motion.    

5. Find the expressions for the fields of an accelerated charge when its velocity is 

small. 



 

Section 66 

1. Verify the formula H = (1/c) (dA/dt) x n (66.3) for the magnetic field of a plane 

wave by direct computation of the curl of (66.2), dropping terms in 1/R0
2 in 

comparison with terms ~1/R0. 

 

Section 67 Landau & Lifshitz Problem 1 

1. For the dipole d(t’)=d0 cost’ ez, find the asymptotic vector potential in the wave 

zone. 

2. One half of the intensity of electric dipole radiation is emitted in the angular range 

(/2)-(/2)   (/2)+(/2).  Determine , which is called the half-intensity 

angle.  Hint:  You should end up with a cubic equation, which may be solved 

numerically, graphically, or by successive guessing. 

3. Suppose a spherically symmetric charge distribution is oscillating purely in the 

radial direction, so that it remains spherically symmetric at every instant.  How 

much radiation is emitted? 

4. Suppose an electric dipole d rotates with a constant angular velocity  about an 

axis perpendicular to the dipole moment.  Find the radiation field and the 

Poynting vector by treating the rotating dipole as the superposition of two 

sinusoidally varying dipoles at right angles to each other.   

5. The classical model of the hydrogen atom has the electron orbiting in a circle of 

radius r and with kinetic energy Ek=(1/2) e2/40r, in Joules.  Calculate the 

fractional energy radiated per revolution, PT/Ek, where T is the orbital period.  

Quantum mechanics prescribes that in the nth level v/c = 1/137n.  Evaluate PT/Ek 

for n=2.    

6. Consider an electron in a circular orbit of radius r about a proton.  (a) Show that 

the total energy of the electron is E = -(1/2) e2/40r, i.e. the negative of the 

kinetic energy, in S.I. units. (b) Assuming the orbit remains approximately 

circular, estimate the time for the electron to fall from R = 10 Å to R = 1 Å, 

assuming classical radiation of electromagnetic energy.  

7. (a) Show that for a classical hydrogen atom, the time for the electron to spiral to 

the center is T = (R/4c)[mc2/(e2/R)]2 in Gaussian units.  (b) Find the life time of 

the classical H atom.  The binding energy is 13.6 eV, the initial orbit radius is 

0.53 Å, and the electron rest energy is 511 keV. 

8. Find the spectrum of dipole radiation (67.10) in terms of wavelength. 

9. Suppose a spherically symmetric shell of total charge Q is oscillating purely in the 

radial direction, so that it remains spherically symmetric at every instant.  The 

radius of the shell can be described by the equation r = r0 cos[t].  Determine the 

mono-, di-, and quadru-pole moments of the distribution.  What is the total 

radiation emitted?   

 

 

 


