ED1 Problems Exam 4 problems Fall 2016
Section 45

1. What is the precession frequency in Hz for an electron in a magnetic field of 1 T? 
2. Proton spins in liquid water become partly polarized in an external magnetic field.  When the field is suddenly changed to a new direction perpendicular to the old, the original polarization precesses about the new magnetic field at the Larmor frequency, and this polarization can be measured with a superconducting quantum interference device (SQUID).  The original polarization decays and a new polarization appears parallel to the new magnetic field direction.  The decay happens by interactions with processes that have time scales similar to the precession frequency.  (a) When the Larmor frequency is ~4 kHz, thermal fluctuations are responsible for the decay.  What magnetic field does this correspond to?  (b)  When the Larmor frequency is ~400 Hz, proton exchange between H3O+ and H2O, and between H2O and OH-, is responsible for the relaxation.  What magnetic field does this correspond to?  See Physics Today Oct 2011. 

Section 46

1. Show that the second pair of Maxwell’s equations in vacuum (46.2) are equivalent to Fik/xk0.

Section 47

1. Show that if the direction of propagation of a plane wave is along X, then the only non-zero component of the Maxwell stress tensor is -xx = W.  

2. A field meter shows that the amplitude of the electric field oscillation in a certain radio wave is 5 millivolts per meter.  What is the amplitude of the magnetic field oscillation in T?  What is the intensity in W/m2?

3. The electric field in an electromagnetic wave is E(y,t) = E0({-1,0,1}/2) Sin(ky-t).  What is the magnetic field H?  What is the Poynting vector?

4. Consider the fields E={F1,F2,F3} and H={G1,G2,G3}, where the Cartesian components of each field are all functions of (x-ct), so that they obviously satisfy Maxwell’s equations, and all components ( 0 as x(  These fields correspond to a pulse of radiation moving in the +x direction.  Maxwell equations place severe restrictions on the components.  Show that we must have F1=G1=0, G3=F2, and G2=-F3, so that there are only two independent polarizations.  Suppose F2()=G3()=E0Exp(-2/a2) and the other components are 0.  ( stands for x-ct.)  Make a sketch that shows a snapshot of the fields in space at time t.  

5. Show that the function f = C Cos[kz] Cos[kct] is a solution of the wave equation.  Determine the functions f1 and f2 (see (47.2)) for this solution.  Explain what is meant by the statement that a standing wave is the superposition of traveling waves in opposite directions. 

Section 48  Landau & Lifshitz Problem 1.
1. Show that the d’Alembertian operator 2/xixi- 2/c2t2.  Show that if A = A0 Exp[-i ki xi] in the four-dimensional wave equation that kiki=0 (48.14).

2. Show (48.15) Tik = Wc2 kikk/2.

3. Calculate S and W/t for a linearly polarized plane wave propagating in the z direction and polarized in the x direction, where S is the Poynting vector and W is the energy density.  Explain the significance of the relationship between these two results for a given volume in space. What is the relationship between the electric field and magnetic field energy densities?
4. Polarized light is incident on a perfect polarizer, and it is observed that 20% of the light intensity gets through.  What is the angle between the polarizer axis and the polarization direction of the light?

5. A polarized plane electromagnetic wave moves in the y direction, with the electric field in the x direction.  What is the direction of the magnetic field at a point where the electric field is in the – x direction? 

6. Consider a superposition of waves traveling in the z direction with fields E=Re[{E1,E2,0}ei(kz-t)] and H=Re[{-E2,E1,0} ei(kz-t)], where E1 = C1 ei and E2 = C2 ei with C1 and C2 real.  Calculate the time-averaged energy flux Savg.  Suppose E1=C and E2=iC.  Describe in words and pictures the direction of E as a function of time, at a point on the xy plane.  Describe in words and pictures the direction E as a function of z for a snapshot of the field at t=0. 

7. The Lyman  spectral line emitted from hydrogen in a distant quasar is observed on earth to have a wavelength of 790 nm (near IR).  This spectral line in terrestrial hydrogen is 122 nm (UV). How fast is the quasar receding from earth?

8. Two plane waves have the same frequency, wave vector and amplitude A, but opposite circular polarization.  What are the amplitude and polarization of their superposition?  
9. “Is there methane on Mars?” Kevin Zahnle, Richard S. Freedman, David C. Catling, Icarus 212 (2011) 493–503.  “The martian lines are displaced from the core of the corresponding terrestrial lines by exploiting the Doppler shift when Mars is approaching or receding from Earth. Relative velocities can exceed 17 km/s. The Doppler shift for a relative velocity of 17 km/s is 0.17 cm-1 at 3000 cm-1, which is enough to separate the centers of the martian and telluric lines, but not enough to remove the martian lines from the wings of the much broader terrestrial lines.”  Figure: Transmission through Earth’s atmosphere in the vicinity of the 3 P4 methane lines. The wings of the P4 band are notably smooth. This makes the highest and lowest frequency lines of the four methane P4 lines relatively detectable when observed in blueshift or redshift, respectively. Doppler shifts of 0.16 cm-1 are assumed here for the illustration.  Verify the expected shifts for 17 km/s relative velocity.
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Section 49

1. Show that if f = Sum[fn exp[- i 0 n t], {n, - (49.1), then fn = (1/T) Integral[ f(t) exp [i n 0 t], {t, -T/2, T/2}] (49.2).

2. Show that the time average of purely periodic field <f>t = f0 = 0, starting from the expansion of this field (49.1).  

3. Show that for fields expandable in a continuous sequence of different frequencies (49.5) that the amplitude f of each contribution has the form (49.6).  Show that f = f*.

4. The figure shows actual experimental data for the periodic emission intensity of a far-infrared p-Ge laser.  (Oscillations correspond to harmonics of the cavity round trip time, not the much faster THz frequency of the fields themselves.)  What are the fundamental period T and frequency 0 of the oscillations?  For the upper trace, estimate the relative amplitudes fn of all harmonics.  
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Section 50

1. Show that if the polarization tensor is related to the field components according to (50.5), then its determinant vanishes.

2. For natural light show that the polarization tensor has the form  = (1/2)  What is the determinant?

3. Show that for a circular polarized wave, the symmetric part of the polarization tensor is (1/2) while the antisymmetric part is –(i/2)eA with A = 1.

4. Show that the principal values of the symmetric part of the polarization tensor sum to one, i.e. 1+2=1.

5. Show that if the coordinates are rotated about x by , so that y and z align with the principal axes of S, that S’ in the new coordinate system is diagonal.

6. Derive (50.11).

7. We measure Stokes parameter 1 using a linear polarizer oriented first at +45 deg to the y (vertical) axis and then at -45 deg, measuring the transmitted intensities J45 and J-45.  Show 1 = (J45 - J-45)/J = 2Re(yz) = [<EyEz*>t + EzEy*>t]/J.  Using the latter expression, find 1 for (a) linear polarization along +45 deg; (b) linear polarization along -45 deg; (c) linear polarization along 0 deg; (d) Circular polarization (R or L)? 
8. We measure Stokes parameter 2 using a quarter wave plate (RHC light Ey = iEz goes to linear polarization at -45 deg Ey  = -Ez) followed by an analyzer (linear polarizer) oriented first at -45 deg to the y (vertical) axis and then at +45 deg, measuring the transmitted intensities J-45 and J+45.  Show 2 = (JRHC – JLHC)/J = 2Im(yz) = -i[<EyEz*>t - <EzEy*>t]/J.  Using the latter expression, find 2 for (a) circular polarization (R or L); (b) linear polarization along 0 deg; (c) linear polarization along +45 deg? 

9. We measure Stokes parameter 3 using a linear polarizer oriented first at +0 deg to the y (vertical) axis and then at 90 deg, measuring the transmitted intensities J0 and J90.  Show 3 = (J0 – J90)/J = (yy - zz) = [<EyEy*>t - <EzEz*>t]/J.  Using the latter expression, find3 for (a) linear polarization along 0 deg; (b) linear polarization along 90 deg; (c) linear polarization along 45 deg; (d) Circular polarization (R or L)? 

Section 62

1. Show with  = (R/t)/R that the homogeneous d’Alembertian equation for  reduces to 2/R2 – (1/c2) 2/t2 = 0.

2. Suppose that at t=0 a current I is suddenly established in an infinite wire that lies on the z axis.  What are the resulting electric and magnetic fields?  Show that after a long time t>>r/c, the magnetic field is the same as the static field of a long wire with constant current I.  What is the electric field for t>>r/c?
3. Confirm that the retarded potentials satisfy the Lorentz gauge conditions.  First show that (j/R) = (1/R)j + (1/R) j -  (j/R), where R = r-r’, denotes derivatives with respect to r, and  denotes derivatives with respect to r’.  Next, noting that j(r’, t-R/c) depends on r’ both explicitly and through R, whereas it depends on r only through R, confirm that j = - (j/ct)R) and j = -(/t) - (j/ct)R).   Use this to calculate the divergence of A according to (62.10).
4. Suppose an infinite straight wire carries a linearly increasing current I(t) = k t, for t > 0.  Find the E and H fields generated.  

5. Suppose an infinite straight wire carries a sudden burst of current I(t) = q0 (t).  Find the E and H fields generated.  

6. A piece of wire bent into a loop, as shown in the figure with inner radius a and outer radius b, carries a current that increases linearly with time I(t) = k t.  Calculate the retarded vector potential A and E-field at the origin.  Can the magnetic field be found from A?
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Section 63

1. Derive the Lienard-Wiechert potentials, i.e. the retarded potentials of a point charge, (63.5) from the four dimensional expression (63.3).  Show that (63.2) results when v = 0.  Show that RkRk = 0 where Rk = [c(t - t’), r - r0(t’)].

2. Calculate the Poynting vector and energy density of the electromagnetic filed of a charged particle moving with constant velocity.  Show that the field energy is carried along with the particle.  

3. Find the dH field of a charge de moving uniformly with velocity v.  Letting v de = I dx, where I is the current in a long straight wire, integrate dH over the length of the wire.  Note that the result agrees with that obtained from Ampere’s law even for v/c(1.

4. Suppose the acceleration of a fast particle is in the same direction as its velocity.  Show that the radiation is zero along the direction of motion.   

5. Find the expressions for the fields of an accelerated charge when its velocity is small.

Section 66

1. Verify the formula H = (1/c) (dA/dt) x n (66.3) for the magnetic field of a plane wave by direct computation of the curl of (66.2), dropping terms in 1/R02 in comparison with terms ~1/R0.

Section 67 Landau & Lifshitz Problem 1
1. For the dipole d(t’)=d0 cost’ ez, find the asymptotic vector potential in the wave zone.

2. One half of the intensity of electric dipole radiation is emitted in the angular range (/2)-(/2)   (/2)+(/2).  Determine , which is called the half-intensity angle.  Hint:  You should end up with a cubic equation, which may be solved numerically, graphically, or by successive guessing.
3. Suppose a spherically symmetric charge distribution is oscillating purely in the radial direction, so that it remains spherically symmetric at every instant.  How much radiation is emitted?
4. Suppose an electric dipole d rotates with a constant angular velocity  about an axis perpendicular to the dipole moment.  Find the radiation field and the Poynting vector by treating the rotating dipole as the superposition of two sinusoidally varying dipoles at right angles to each other.  

5. The classical model of the hydrogen atom has the electron orbiting in a circle of radius r and with kinetic energy Ek=(1/2) e2/40r, in Joules.  Calculate the fractional energy radiated per revolution, PT/Ek, where T is the orbital period.  Quantum mechanics prescribes that in the nth level v/c = 1/137n.  Evaluate PT/Ek for n=2.   
6. Consider an electron in a circular orbit of radius r about a proton.  (a) Show that the total energy of the electron is E = -(1/2) e2/40r, i.e. the negative of the kinetic energy, in S.I. units. (b) Assuming the orbit remains approximately circular, estimate the time for the electron to fall from R = 10 Å to R = 1 Å, assuming classical radiation of electromagnetic energy. 

7. (a) Show that for a classical hydrogen atom, the time for the electron to spiral to the center is T = (R/4c)[mc2/(e2/R)]2 in Gaussian units.  (b) Find the life time of the classical H atom.  The binding energy is 13.6 eV, the initial orbit radius is 0.53 Å, and the electron rest energy is 511 keV.
8. Find the spectrum of dipole radiation (67.10) in terms of wavelength.
9. Suppose a spherically symmetric shell of total charge Q is oscillating purely in the radial direction, so that it remains spherically symmetric at every instant.  The radius of the shell can be described by the equation r = r0 cos[ t].  Determine the mono-, di-, and quadru-pole moments of the distribution.  What is the total radiation emitted?  

