PHY 5346 Electrodynamics I Fall 2016
Exam 3 Problems

Section 31

1. Consider a capacitor with circular plates of radius a, which is charging with current I.  What is the energy flux density on the cylindrical surface of radius a that encloses the volume between the plates?  What direction is electromagnetic energy flowing through this mathematical surface?  What is the total rate at which field energy flows into the cylindrical volume?  Show that this equals the rate of change of the total electric field energy stored between the capacitor plates.  

2. Consider a segment of conducting wire that extends from z = 0 to z = l.  The power supplied to the moving charges in the dc current I, by the potential difference V0 from one end of the segment to the other, is P = I V0.  Show that this equals the electromagnetic power that flows in through the surface of the wire.  

3. Prove by using tensor methods that div(ExH) = H.curlE - E.curlH.

4. If W is the energy density and S is the Poynting vector for an electromagnetic field, prove that c2W2 – S2 is invariant.

Section 32.

1. Show that  in (32.1) is the Lagrangian density.

2. What are the three four-vectors dxi, dx’i, and dx’’i that span the hyperplane x0=constant? Show that dS1 = dS2 = dS3 = 0 when integrations are carried out over the hypersurface x0=const.  Show that T0kdSk = T00dV if the integration is carried out over the hyper surface x0=const.

3. Consider the rank 3 tensor ikl=-ilk.  Show that 2iklxkxl = 0. Show that the definition of the energy-momentum tensor Tik (32.3) is not unique, i.e. one can always obtain another tensor T’ik by adding a term iklxl to Tik, such that T’ki also satisfies the conservation law (32.4).  Show that iklxl)dSk = (1/2) dSkiklxl – dSliklxk).  Show that T’ik gives the same momentum 4-vector, i.e. that the momentum 4-vector is uniquely determined even though the energy-momentum tensor is not. 

Section 33.

1. Show that the energy-momentum tensor for the electromagnetic field (33.1) is symmetric.  Show that the trace of the energy momentum tensor for the electromagnetic field is zero.

2. Show that T00 is the electromagnetic energy density.  Show that cT are the components of the Poynting vector.  Derive the components of the Maxwell stress tensor.

3. (a) If the electric and magnetic fields are parallel, or if the electric field is zero, or if the magnetic field is zero, when the field is parallel to the x axis, show that the energy-momentum tensor is diagonal with components W, -W, W, W, where W is the energy density.  

4. If the electric and magnetic field magnitudes are equal and the electric and magnetic fields are perpendicular (parallel to x and y axes, respectively), show that the non-zero components of the electromagnetic field tensor equal W and occur only in the “corners” of the matrix.

5. (a) Show that for non-interacting paricles, T0= c2 u, where  = 1,2,3,  is the mass density, and ui is the velocity four-vector.  (b) Show that T = T =  c u u0 ds/dt.  (c) Use the physical interpretation of T00 to show it equals  c u0 u0 ds/dt.  (d) Use the physical meaning of the Maxwell stress tensor to show that T=  c u u ds/dt, =1,2,3.

6. Consider an infinite parallel-plate capacitor, with the lower plate (at z = -d/2) carrying the charge density –, and the upper plate (at z = +d/2) carrying the charge density +.  Determine all nine elements of the Maxwell stress tensor, in the region between the plates.  Display your answer as a 3 x 3 matrix.  Determine the force per unit area on the top plate.  What is the momentum per unit area, per unit time, crossing the xy plane?  At the plates this momentum is absorbed, and the plates recoil unless fixed by external force.  Find the recoil force per unit area on the top plate.

7. Fill in the details in the derivation of (33.7) for the 4-div of the energy momentum tensor of the electromagnetic field and of (33.9) for the 4-div of the energy momentum tensor of the particles.

8. Determine the net force on the northern hemisphere of a uniformly charged solid sphere of radius R and charge Q using the Maxwell stress tensor.  

9. Consider two equal point charges q, separated by a distance 2a.  Construct the plane equidistant from the two charges.  By integrating Maxwell’s stress tensor over this plane, determine the force of one charge on the other. Do the same for charges that are opposite in sign.

10. A charged parallel-plate capacitor with uniform electric field E = E ez is placed in a uniform magnetic field H = H ex.  Find the electromagnetic momentum in the space between the plates.  Now a resistive wire is connected between the plates, along the z axis, so that the capacitor slowly discharges.  The current through the wire will experience a magnetic force; what is the total impulse p=Fdt delivered to the system during the discharge?  Instead of turning off the electric field, suppose we slowly reduce the magnetic field.  This will induce a Faraday electric field, which in turn exerts a force on the plates.  Show that the total impulse is again eqaual to the momentum originally stored in the fields.  

11. A uniform constant magnetic field H is directed along the z-axis of an inertial frame.  Find the energy momentum tensor in both Gaussian and S.I. units.

Section 35

1. A straight rod has cross-sectional area A and mass m per unit length.  It lies along the X-axis of an inertial frame in a state of tension F.  (a) Show that the energy-momentum tensor has components which are the elements of a 4 x 4 diagonal matrix, with diagonal elements (mc2/A, -F/A, 0, 0). (b) Deduce that an observer moving along the X-axis with speed V observes an energy per unit length of the rod to be (mc2 – FV2/c2)/(1-V2/c2).  Deduce that F cannot exceed mc2.  

Section 36

1. A long uniformly charged ribbon is located in the xz plane, parallel to the z axis, occupying the region –z and –a/2 x a/2.  The charge per unit area on the ribbon is .  Determine E at (x, 0, 0), where x > a/2.  What is the asymptotic field on the x axis?  Determine E at (0, y, 0), where y > 0 .  What is the asymptotic field on the y axis?

2. A charge +q is at (0, 0, z0).  What is the electric field E(r)?

3. Find the restrictions on C1 and C2 such that the function V(r,) = (C1 Cos2[] + C2)/r3 may be a potential function in a charge-free region of space.

4. A semi-infinite wire lies on the negative z axis, from z = 0 to z = - , with constant linear charge density .  Determine E at a point (0, 0, z) on the positive z axis.  Determine E at a point (x, 0, 0) on the positive x axis.

5. For any charge free region of space, prove the mean value theorem:  If S is the surface of a mathematical sphere whose interior contains no charge, then the potential at the center is equal to the average of the potential over the surface S.

Section 37 

1. Calculate the energy per unit length for two long coaxial cylindrical shells, neglecting end effects.  The inner and outer cylinders have radii a and b, and linear charge densities  and –, uniformly distributed on the surface, respectively.

2. Consider two charges separated by a distance a.  If E1 is the field of q1 and E2 is that of q2, find the interaction part U12 of the potential energy.    (Hint:  U12 depends only on a, so without loss of generality let q1 be at the origin, and q2 on the z axis at z = a.)

3. Find the electrostatic energy of a uniformly charged solid sphere with total charge Q and radius R.  Use the result to compute the electrostatic energy of an atomic nucleus (charge = Ze, radius = (1.2 x 10-15 m) A1/3] in MeV times Z2/A1/3.  Calculate the change of electrostatic energy when a uranium nucleus (Z = 92, A = 238) fissions into two equal fragments.  

4. Calculate the self-energy of a charged spherical surface, with total charge Q uniformly distributed on the surface, and radius R.  What is the physical significance of this result?  What is the limit of the self-energy as R(0?

5. Let us assume that an electron is a uniformly charged, spherical particle of radius R.    Determine the self energy of the distribution.  Assuming that the rest energy is electrostatic in origin, determine the "classical radius" R.
Section 38

1. Complete the derivation of (38.6) for the electric field of a uniformly moving charge.

2. For velocities v of a charged particle close to c, show that the half width at half maximum of the angular distribution of the electric field (38.8) is   0.8 (1-v2/c2).

3. Show that the fields of a moving charge satisfy Maxwell’s equations, apart from the singularity at r = [vt, 0, 0].

4. A proton at the origin exerts a force on the nucleus of a gold atom at rest on the z axis at z = 100 fm. (The atomic electrons are irrelevant.) Compute the force on the Au nucleus if the proton is (a) at rest, and (b) moving along the x axis with speed 0.99 c.  Also, in the latter case, plot the magnitude of the force on the Au nucleus as a function of time.  In making the plot it is convenient to measure time in zeptoseconds (zs) where 1 zs = 10-21 s. Express the forces in MeV/fm.  (Neglect the motion of the heavy Au nucleus.)

5. For a charge in uniform motion with velocity v, show that R*=R  (1-(v/c)2 Sin2), where R is the vector from the present position of the charge to the field point and R.v = R v cos.  Plot a polar graph of |E| as a function of  for a fixed R, assuming v/c = 0.8.

6. Determine the force (in the lab frame) between two charges moving with the same velocity V.  What is the ratio of transverse-to-longitudinal force?  Explain what happens to this ratio when the two charges lie on a line parallel to V or perpendicular to V?

Section 40

1. Complete the derivation (40.8) for the electric field of a dipole, i.e. take the necessary gradients.  Show that (40.8) and (40.9) are equivalent.

2. Derive (40.10) and (40.11) for the Cartesian and spherical coordinate components of the electric dipole field in a plane passing through d. (My edition has a sign typo!). 

3. Three charged line segments, each with linear charge density , extend from the origin O to (a, 0, 0), from O to (0, b, 0), and from O to (0, 0, c).  Find the dipole moment of this charge distribution.  Find the first two terms in the multipole expansion of the potential on the z axis for z >> a,b,c.  What are the monopole and dipole contributions to E(0, 0, z) for z >> a, b, c?

4. A point dipole p = p ez is at the origin.  At point P1 = (x1,0,0) there is a point charge e.  What is the force on this charge due to the field of the dipole?  What is the force on the dipole?  How much work is required to take the charge from P1 to infinity if the dipole remains fixed at the origin?  How much work is required to take the dipole from the origin to infinity if the charge remains fixed at P1?  What is the physics underlying the simple answers to these questions?  

5. A point dipole p = p ez is at the origin.  A point charge e is located at P2 = (x2, y2, z2).  How much work is required to move the charge?  What is the force on e when it is at P2?

6. The dipole p = [p1, p2, p3] is located at the origin.  What is the potential in spherical coordinates?  What is the electric field in spherical coordinates?

7. A point dipole p = p0 ez is at the origin.  A second dipole p = p0 ez is at (0, 0, z0).  What is the force on the second dipole?  What is the interaction energy?  [Hint: The energy is the work required to bring the second dipole to (0, 0, z0) with the first dipole fixed.  Show that the energy is – p. E(0,0,z0).

Section 41

1. Show that (XX(1/R0) = 3 XX/R05 - /R03.  Derive the form (41.6) for the quadrupole term of the potential starting from (41.5).

2. Show that if Dxx = Dyy = -(1/2) Dzz = -(1/2) D holds for the components of the quadropole moment tensor, then the quadropole term of the potential has the form (41.8).

3. If the total charge e = 0, and the dipole moment vector d = re = 0, show that the quadrupole moment tensor D is independent of the choice of origin.

4. Derive the expression for the lth term (l) (41.12) in the expansion of the potential and the 2l-pole moment Qm(l) (41.13) from the expansion (41.9) of 1/|R0-r| in spherical harmonics.

5. Using a table of Ylm functions, derive the relations between 21-pole moment Q(1)m and the components of the dipole moment d (41.14). 

6. A linear quadrupole consists of three charges: q, -2q, and q, on the z axis.  The positive charges are at z = a and the negative charge is at the origin.  Show that this system is the same as two dipoles, with dipole moments +q a ez and –q a ez, centered at z = +a/2 and z = -a/2, respectively.  Calculate the potential (r,) in spherical coordinates for r >> a.  Sketch the electric field lines in the xz plane.  What is the quadrupole moment tensor for this charge distribution?

7. Consider the electric quadrupole consisting of four charges in the xy plane: +q at (x,y) = (a,0), -q at (0, a), +q at (-a, 0), and –q at (0, -a).  Determine the electric potential on the x axis.  What is the asymptotic form of the potential (x,0,0)?  Use computer graphics to make a log-log plot of  vs. x at verify the asymptotic behavior.  Determine the electric field on the x axis for x>>a.  Determine the electric field on the z axis.

Section 42

1. Show that [ (d.E)]r=0 = (d.)E0 for the force (42.5) on a system of charges in an external field when the net charge is zero.

Section 43

1. Using the Biot-Savart law, determine the magnetic field due to a current I in a long straight wire.

2. Using the Biot-Savart law, determine the magnetic field due to a circular current loop, at an arbitrary point on the axis of symmetry.

3. A square wire loop of size 2a x 2a lies in the xy plane with its center at the origin and sides parallel to the x and y axes.  A counterclockwise current I runs around the loop.  Find the magnetic field on the z axis.  Show that for z/a >> 1 the field becomes that of a magnetic dipole, and find the magnetic moment.  Compare the field at the center of this square loop with that at the center of a circular loop of diameter 2a.  

4. Consider a circular cylindrical solenoid of finite length L, radius a, with N turns of wire carrying current I0.  The current may be approximated by a surface current density K (=azimuthal current per unti length along the cylinder) equal to NI0/L.  Caclulate the magnetic field on the axis of the cylinder halfway between the ends. (Hint subdivide the solenoid into infinitesimal current rings dI = Kdz’).  Calculate the magnetic field on the axis of the cylinder at either end.  Show that Bend/Bcenter approaches ½ as L/a(
5. Use index methods to show that x (f a) = f(x a) + (f) x a.  Show that ( (1/R)) x j = (j x R) /R3.

Section 44

1. Use index methods to show the identity (r x v) x R = (r.R)v – (v.R)r used to obtain (44.3).  Use index methods to derive the identity x (a x b) = (b.)a – (a.)b + a(.b) - b.a).  Use index methods to show that (R/R3) = 0Use index methods to show that (m.)(R/R3) = (m/R3) – 3R(m.R)/R5.

2. A small circular loop carrying current I is in the xy plane with its center fixed at the origin.  The dipole moment is in the same direction as +ez. Sketch the magnetic field lines.  A second identical current loop is located on the x axis at some fixed distance d from the origin.  Assume the axis of the first loop is fixed in the z direction, but the second loop is free to rotate.  What is the equilibrium orientation of the second loop?  What is the direction of the second dipole moment in stable equilibrium?  

3. At the surface of the Earth the magnetic field is approximately the same as the field from a point dipole mE at the center of the Earth.  The dipole moment is mE = mE [sin0cos0, sin0sin0, cos0] where mE = 7.79 x 1022 A m2, and (0,0) = (169 deg, 109 deg).  The z axis is the Earth’s rotation axis and the x axis passes through the Prime Meridian on which Greenwich lies; positive  is to the east.  Calculate the magnetic field H at a point on the earth with colatitude  and longitude .  Give the components of H to the north (-e), to the east (e), and vertical (er).  Calculate these components for Orlando, in Gauss.
4. The planet Mercury has a dipole magnetic field like Earth’s.  In 2011, NASA’s messenger mission to Mercury discovered that Mercury’s dipole is displaced 400 km to the north of center.  The radius of Mercury is 2440 km.  Do you think this displacement would be easy to detect?  What is the ratio of the fields on the surface at north and south magnetic poles?  What is the ratio at the altitude of Messenger’s closest approach (228 km)?  NASA’s website gives the surface-field ratio at Mercury’s geographic poles as 3.5.  Discuss any difference with your answer.
