Vector Spaces

A linear vector space \mathbb{V} is a set of objects (the vectors) along with definite rules for vector addition and scalar multiplication which satisfy the following rules. (Here the vectors are denoted by lower-case Roman letters a, b, c, ... and scalars by lower-case Greek letters α, β, \ldots)

- 1. Vector addition, denoted a + b, must satisfy the following:
 - (a) Closure: $a + b \in \mathbb{V}$
 - (b) Commutivity: a + b = b + a
 - (c) Associativity: (a + b) + c = a + (b + c)
 - (d) Identity: there exists a null vector \emptyset for which $a + \emptyset = a$ for all a
 - (e) For every vector a there exists an additive inverse, denoted -a, for which $a + (-a) = \emptyset$
- 2. Scalar multiplication, denoted αa , must satisfy the following:
 - (a) Closure: $\alpha a \in \mathbb{V}$
 - (b) Associativity: $\alpha(\beta c) = (\alpha \beta)c$
 - (c) Distributivity in vectors: $\alpha(a + b) = \alpha a + \alpha b$
 - (d) Distributivity in scalars: $(\alpha + \beta)a = \alpha a + \beta a$
 - (e) Identity: 1a = a

Inner Product Spaces

Inner products can be denoted (a, b) or $a \cdot b$ or (my preference) $\langle a|b \rangle$.

An inner product $\langle a|b \rangle$ of two vectors is a definite rule that produces a scalar and satisfies:

$$\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle^* \langle \mathbf{a} | \beta \mathbf{b} + \gamma \mathbf{c} \rangle = \beta \langle \mathbf{a} | \mathbf{b} \rangle + \gamma \langle \mathbf{a} | \mathbf{c} \rangle$$

The only useful inner products in Physics are also positive semi-definite, which means:

$$\langle \mathbf{a} | \mathbf{a} \rangle \ge 0$$
, and $\langle \mathbf{a} | \mathbf{a} \rangle = 0$ iff $\mathbf{a} = \emptyset$.