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1. The operator £ = i d/dz has as its domain the set of all differentiable functions on
the interval 0 < x < L with periodic boundary conditions f(0) = f(L). Derive the
adjoint operator £ and its domain.
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If g(L) = ¢g(0) the boundary term vanishes. This defines the domain of the adjoint
operator. For such functions g the above becomes

(glLf) = (LTglf)
with L1 = id/dz. Since LT = £ and the domains are identical, £ is self-adjoint.

2. The operator £ = id/dx has as its domain the set of all differentiable functions on
the interval 0 < z < L with boundary conditions f'(0) = 0 = f'(L) (notice the two
derivatives). Derive the adjoint operator £ and its domain.

Solution:
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Since f(L) and f(0) can be anything, the boundary term only vanishes if g(L) =
0 = ¢(0). This defines the domain of the adjoint operator. For such functions g
the above becomes

(glLf)y = (LTglf)

with £T = id/dx. We have LT = L; but because the domains are different, £ is not
self-adjoint. (In fact it is not even Hermitian: the boundary term does not vanish
for all functions ¢ in the original domain.)



3. The operator £ = d?/dz? has as its domain the set of all twice-differentiable func-
tions on the interval 0 < x < L with boundary conditions f'(0) =0 = f(L) (notice
the one derivative). Derive the adjoint operator LT and its domain.

Solution:
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Here part of the boundary term vanishes because of the boundary condition f'(0) =
0. Integrating by parts again gives

d da* da* L d2 *
wien = | <[ -2 o)+ [Caths
r= r= =0
o df dg* g AN
- r0 g | o / da (d—) 3

where I have used f(L) = 0. The boundary term vanishes if ¢'(0) = 0 = g(L).
This defines the domain of the adjoint operator. For such functions g the above
becomes

(glef) = (LTglf)
with £ = d?/dz?. Since LT = £ and the domains are identical, £ is self-adjoint.

4. Find the eigenfunctions and eigenvalues of the operator £ = id/dx on the in-
terval [0,L] with periodic boundary conditions y(L) = y(0). Show that, properly
normalized, the eigenfunctions form an infinite orthonormal set.

Solution: The eigenfunction ODE
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has the general solution y(z) = Ce~*. Imposing y(L) = y(0) yields e~
This is solved by AL = 2nm with n =0, +1,£2,.... Thus the eigenvalues are
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Ap=2nm/L, n=0,4£1,42 ...



The eigenfunctions are y,(z) = Ce™?""*/L These are normalized by setting
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which is solved by C' =1/ VL. Thus the normalized eigenfunctions are
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Orthogonality is checked by examining

I
Ynlym) = — / da ¢ m/E
L J,

When m = n this produces unity, as above. When m # n it gives
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The last step follows because e = 1 for any integer k.

. Find the eigenfunctions and eigenvalues of the operator £ = i d/dx on the interval
[0,L] with boundary conditions y'(0) = 0 = y/(L) (notice the two derivatives).

Solution: The eigenfunction ODE

dy
Ay
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has the general solution y(z) = Ce~*. Imposing y'(0) = 0 yields
—iCA = 0.

Choosing C' = 0 gives the trivial solution y(x) = 0. The other choice A = 0 gives
y(x) = C. In that case the other boundary condition y/'(L) = 0 is also satisfied.
Thus we have managed to find only one eigenstate:

A=0, y(x)= const.

We did not find an infinite set because the operator is not self-adjoint; briefly,
because the boundary conditions are unsuitable.
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6. Find the eigenfunctions and eigenvalues of the operator £ = d?/dz? on the interval
[0,1] with boundary conditions 3'(0) = 0 = y(L) (notice the one derivative). Show
that, properly normalized, the eigenfunctions form an infinite orthonormal set.

Solution: The eigenfunction ODE
d*y
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has the general solution
y(z) = Asinh(A\2z) 4+ B cosh(A2z).
Taking one derivative gives

y'(z) = A2 cosh(A\2z) + BA2 sinh(\2z).

Imposing y'(0) = 0 yields AN = 0. Thus either A = 0 or A = 0. Try the latter
first. In that case y(x) = B; imposing the other condition y(L) = 0 then forces
B = 0, which produces the trivial solution y(x) = 0. So instead we must have
A =0 and thus y(z) = Bcosh(A2z). Now imposing y(L) = 0 gives cosh(A\2L) = 0,
which is solved by AL = iln+1/2)r withn =0,1,2,3,.... Since Az is imaginary,
the eigenfunction becomes

yn(z) = By cos((n+ 1/2)wx/L).
By choosing B,, = 1/2/L the solutions are normalized. The final answer is thus

It is easy to show (for instance by checking an integral table) that these are or-
thonormal:

(Ynlym) = %/OL dx sin (W) sin (W) = O

It would have been easier to solve this by realizing from the beginning that the
solutions had to be sinusoidal rather than hyperbolic. That means A must be

negative. Thus we could write A\ = —k%. The ODE becomes
d*y 2
i
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which is solved by
y(x) = Asin(kz) + B cos(kz).

The boundary condition y'(0) = 0 forces A = 0, so the eigenfunction becomes
y(x) = Bcos(kzx).
Now imposing the other boundary condition y(L) = 0 forces
cos(kL) =0 or kL = (n+1/2)~.

Then the above solution follows easily.



