
HW 8 Solution
PHZ 5156, Computational Physics

October 25, 2005

1. The operator L = i d/dx has as its domain the set of all differentiable functions on
the interval 0 ≤ x ≤ L with periodic boundary conditions f(0) = f(L). Derive the
adjoint operator L† and its domain.

Solution:

〈g|Lf〉 =

∫ L

0

dx g∗(x)i
df

dx

= i [g∗(L)f(L)− g∗(0)f(0)]− i

∫ L

0

dx
dg∗

dx
f

= if(0) [g(L)− g(0)]∗ +

∫ L

0

dx

(
i
dg

dx

)∗

f.

If g(L) = g(0) the boundary term vanishes. This defines the domain of the adjoint
operator. For such functions g the above becomes

〈g|Lf〉 = 〈L†g|f〉

with L† = i d/dx. Since L† = L and the domains are identical, L is self-adjoint.

2. The operator L = i d/dx has as its domain the set of all differentiable functions on
the interval 0 ≤ x ≤ L with boundary conditions f ′(0) = 0 = f ′(L) (notice the two
derivatives). Derive the adjoint operator L† and its domain.

Solution:

〈g|Lf〉 =

∫ L

0

dx g∗(x)i
df

dx

= i [g∗(L)f(L)− g∗(0)f(0)]− i

∫ L

0

dx
dg∗

dx
f.

Since f(L) and f(0) can be anything, the boundary term only vanishes if g(L) =
0 = g(0). This defines the domain of the adjoint operator. For such functions g
the above becomes

〈g|Lf〉 = 〈L†g|f〉

with L† = i d/dx. We have L† = L; but because the domains are different, L is not
self-adjoint. (In fact it is not even Hermitian: the boundary term does not vanish
for all functions g in the original domain.)
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3. The operator L = d2/dx2 has as its domain the set of all twice-differentiable func-
tions on the interval 0 ≤ x ≤ L with boundary conditions f ′(0) = 0 = f(L) (notice
the one derivative). Derive the adjoint operator L† and its domain.

Solution:

〈g|Lf〉 =

∫ L

0

dx g∗(x)
d2f

dx2

=

[
g∗(L)

df

dx

∣∣∣∣
x=L

− g∗(0)
df

dx

∣∣∣∣
x=0

]
−

∫ L

0

dx
dg∗

dx

df

dx

= g∗(L)
df

dx

∣∣∣∣
x=L

−
∫ L

0

dx
dg∗

dx

df

dx
.

Here part of the boundary term vanishes because of the boundary condition f ′(0) =
0. Integrating by parts again gives

〈g|Lf〉 = g∗(L)
df

dx

∣∣∣∣
x=L

−
[

dg∗

dx

∣∣∣∣
x=L

f(L)− dg∗

dx

∣∣∣∣
x=0

f(0)

]
+

∫ L

0

dx
d2g∗

dx2
f

= g∗(L)
df

dx

∣∣∣∣
x=L

+
dg∗

dx

∣∣∣∣
x=0

f(0) +

∫ L

0

dx

(
d2g

dx2

)∗

f,

where I have used f(L) = 0. The boundary term vanishes if g′(0) = 0 = g(L).
This defines the domain of the adjoint operator. For such functions g the above
becomes

〈g|Lf〉 = 〈L†g|f〉

with L† = d2/dx2. Since L† = L and the domains are identical, L is self-adjoint.

4. Find the eigenfunctions and eigenvalues of the operator L = i d/dx on the in-
terval [0,L] with periodic boundary conditions y(L) = y(0). Show that, properly
normalized, the eigenfunctions form an infinite orthonormal set.

Solution: The eigenfunction ODE

i
dy

dx
= λy

has the general solution y(x) = Ce−iλx. Imposing y(L) = y(0) yields e−iλL = 1.
This is solved by λL = 2nπ with n = 0,±1,±2, . . .. Thus the eigenvalues are

λn = 2nπ/L, n = 0,±1,±2, . . . .
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The eigenfunctions are yn(x) = Ce−i2nπx/L. These are normalized by setting

〈yn|yn〉 = 1 =

∫ L

0

dx y∗n(x)yn(x) =

∫ L

0

dx |C|2 = |C|2L,

which is solved by C = 1/
√

L. Thus the normalized eigenfunctions are

yn(x) =
1√
L

e−i2nπx/L.

Orthogonality is checked by examining

〈yn|ym〉 =
1

L

∫ L

0

dx ei2π(n−m)/L.

When m = n this produces unity, as above. When m 6= n it gives

1

L

L

i2π(n−m)
ei2π(n−m)x/L

∣∣L
0

=
1

i2π(n−m)

[
ei2π(n−m) − 1

]
= 0.

The last step follows because ei2πk = 1 for any integer k.

5. Find the eigenfunctions and eigenvalues of the operator L = i d/dx on the interval
[0,L] with boundary conditions y′(0) = 0 = y′(L) (notice the two derivatives).

Solution: The eigenfunction ODE

i
dy

dx
= λy

has the general solution y(x) = Ce−iλx. Imposing y′(0) = 0 yields

−iCλ = 0.

Choosing C = 0 gives the trivial solution y(x) ≡ 0. The other choice λ = 0 gives
y(x) = C. In that case the other boundary condition y′(L) = 0 is also satisfied.
Thus we have managed to find only one eigenstate:

λ = 0, y(x) = const .

We did not find an infinite set because the operator is not self-adjoint; briefly,
because the boundary conditions are unsuitable.
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6. Find the eigenfunctions and eigenvalues of the operator L = d2/dx2 on the interval
[0,L] with boundary conditions y′(0) = 0 = y(L) (notice the one derivative). Show
that, properly normalized, the eigenfunctions form an infinite orthonormal set.

Solution: The eigenfunction ODE

d2y

dx2
= λy

has the general solution

y(x) = A sinh(λ
1
2 x) + B cosh(λ

1
2 x).

Taking one derivative gives

y′(x) = Aλ
1
2 cosh(λ

1
2 x) + Bλ

1
2 sinh(λ

1
2 x).

Imposing y′(0) = 0 yields Aλ
1
2 = 0. Thus either A = 0 or λ = 0. Try the latter

first. In that case y(x) = B; imposing the other condition y(L) = 0 then forces
B = 0, which produces the trivial solution y(x) ≡ 0. So instead we must have

A = 0 and thus y(x) = B cosh(λ
1
2 x). Now imposing y(L) = 0 gives cosh(λ

1
2 L) = 0,

which is solved by λ
1
2 L = i(n+1/2)π with n = 0, 1, 2, 3, . . .. Since λ

1
2 is imaginary,

the eigenfunction becomes

yn(x) = Bn cos((n + 1/2)πx/L).

By choosing Bn =
√

2/L the solutions are normalized. The final answer is thus

λ = −
(

(n + 1/2)π

L

)2

, yn(x) =

√
2

L
cos

(
(n + 1/2)πx

L

)
, n = 1, 2, 3, . . . .

It is easy to show (for instance by checking an integral table) that these are or-
thonormal:

〈yn|ym〉 =
2

L

∫ L

0

dx sin

(
(n + 1/2)πx

L

)
sin

(
(m + 1/2)πx

L

)
= δnm.

It would have been easier to solve this by realizing from the beginning that the
solutions had to be sinusoidal rather than hyperbolic. That means λ must be
negative. Thus we could write λ = −k2. The ODE becomes

d2y

dx2
= −k2y,
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which is solved by
y(x) = A sin(kx) + B cos(kx).

The boundary condition y′(0) = 0 forces A = 0, so the eigenfunction becomes

y(x) = B cos(kx).

Now imposing the other boundary condition y(L) = 0 forces

cos(kL) = 0 or kL = (n + 1/2)π.

Then the above solution follows easily.
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