
HW 4 Computational Physics
September 13, 2005 Due September 20

It is good practice to use high-quality existing routines rather than writing your own.
Here you will compare your rk4 function with scipy’s ordinary differential equation solver
odeint, with particular attention to the step size tau and the run time.

1. Consider the stiff set of ordinary differential equations:

dy

dt
= −ay, where y(t) =

(
y1(t)

y2(t)

)
, a =

(
−9998 −19998

9999 19999

)
,

with initial conditions y1(0) = 2, y2(0) = −1. Show that this is solved exactly by

y(t) =

(
2e−t

−e−t

)
by plugging this into the differential equation.

2. Numerically solve for y(t) for t = 0 to t = 6 using your Runge-Kutta function rk4

from the last homework. Use a step size τ = 0.0001. Print the time taken by the
call to rk4 and print the final value of y at t = 6. Plot the analytic and numerical
y1(t) and y2(t) vs. t together on one graph. Snippet:

def stiff(yn,tn) :

# RHS of the first-order coupled ODE’s.

...

return rhs

def rk4(f,y0,t):

...

# Main code

y0=array([2.,-1.])

tfinal, tau = 6., 0.0001

t = arange(0,tfinal+tau,tau)

start = time.clock()

y = rk4(stiff,y0,t)

finish = time.clock()

elapsed = finish - start

3. Repeat using a step size τ = 0.01. Start at t = 0 and calculate for ten or twenty
time steps, printing the calculated values, until your numerical answer goes bad.

4. Find the eigenvalues of a and explain why (2) works and (3) does not.

5. Solve for times 0 ≤ t ≤ 6 using odeint and a step size τ = 0.01. To learn how to
use odeint try

from scipy.integrate import odeint

help(odeint)

In your code print the time for the call to odeint and plot your solution and the
analytic solution together as in (2). Do you see the benefit of using an algorithm
such as odeint designed to handle stiff problems? Discuss.


