HW 11 Computational Physics
November 8, 2005 Due November 15

- Lea, Chapter 2, problems 7, 8(a), 10, 11, 14, 16. In 16, only take the derivative using df/dz.

1. The following integrals have a contour of integration C which is the circle of radius 2 centered on the origin. Evaluate by hand, by substituting $z = 2e^{i\theta}$ and integrating over the real variable θ.

 (a) $\oint \frac{dz}{z^2}$
 (b) $\oint \frac{dz}{z}$
 (c) $\oint dz$
 (d) $\oint z dz$

2. In this problem you will evaluate $\int_C \cos z \, dz$ several ways. Here C is the line segment along $y = x$ beginning at $z = 0$ and ending at $z = 1 + i$.

 (a) Evaluate the integral using the indefinite integral and the endpoints.
 (b) Evaluate the integral by writing $z = x + iy$, using $y = x$, and turning the integral into an integral over the real variable x.
 (c) Now change the contour to a path from $z = 0$ to $z = 1$ along the real axis, followed by a vertical path from $z = 1$ to $z = 1 + i$. Do the integral of $\sin z$ along this two-step contour by hand (not using endpoints).

3. Let $f(z) = z^\frac{3}{2}$ have a branch cut along the negative real axis, and let C be the semicircle of radius 1 beginning at i, moving counterclockwise, and ending at $-i$. This path crosses the cut. Evaluate $\int_C z^\frac{1}{2} \, dz$ using endpoints. Be careful when you cross the cut to stay within the correct branch. Then the integrand is discontinuous across the cut and as a result you need to consider four endpoints.