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1 charge-to-mass ratio
Given a current source point r0 and a measuring point rp, the separation vector
is given by r = rp − r0.

Definition 1.1. The Biot-Savart Law:

The magnetic field of a steady line current I is given by the Biot-Savart law:

B(r) =
µ0
4π
I

∫
dl’× r̂
|r|2

(1)

where the constant µ0 is called the permeability of free space and dl’ is a vector
in the direction of current flow.

1.1 Helmholtz Coil

1.1.1 Magnetic Field of a Current Loop

R

θ

dl’

î ĵ

k̂

B

θ dB

z r

Figure 1: Circular current loop

We want to find the magnetic field at a distance z above the center of
circular loop of radius R, which carries a steady current I (see Figure 1 ).
We choose our axes so as to leave the wire loop parallel to the xy plane.
Recall that in polar coordinates the unit vectors ρ̂, φ̂, ẑ follow the properties

ρ̂× φ̂ = ẑ −→ φ̂× ρ̂ = −ẑ

φ̂× ẑ = ρ̂ −→ ẑ× φ̂ = −ρ̂

ẑ× ρ̂ = φ̂ −→ ρ̂× ẑ = −φ̂

Clearly, the element dl’ is given by dl’ = dlφ̂. Now, suppose that z = 0. This
implies r̂ always points inward, or r̂ = − Rρ̂√

R2
= −ρ̂. A unit vector that points



charge-to-mass ratio 3

inward and in the z direction is then given by r = −Rρ̂+ zẑ. Normalizing
this vector we get r̂ = −Rρ̂+zẑ√

R2+z2
. Then

dl’× r̂ =
dl√
R2 + z2

[
φ× (−Rρ̂+ zẑ)

]
=

dl√
R2 + z2

[
Rẑ+ zρ̂

]
and given that |r|2 = R2 + z2 we find that

dl’× r̂
|r|2

=
dl

(R2 + z2)3/2

[
Rẑ+ zρ̂

]
∫
dl’× r̂
|r|2

=

∫
dlR

(R2 + z2)3/2
ẑ+

∫
dlz

(R2 + z2)3/2
ρ̂

and given that dl = Rdφ

∫
dl’× r̂
|r|2

=
R2

(R2 + z2)3/2

∫
ẑdφ+

Rz

(R2 + z2)3/2

∫
ρ̂dφ

Observe that, given that ρ̂ = cosφî+ sinφĵ, around a close loop:∫2π
0
ρ̂dφ =

∫2π
0

cosφîdφ+

∫2π
0

sinφĵdφ

= î sinφ− ĵ cosφ
∣∣2π
0

= 0

therefore

∫
dl’× r̂
|r|2

=
R2

(R2 + z2)3/2

∫
ẑdφ

=
2πR2

(R2 + z2)3/2

Consequently

B(r) =
µ0I

2

R2

(R2 + z2)3/2
(2)

Of course, we could have applied to symmetry and say that as we in-
tegrate dl’ around a loop (refer to Figure 1), dB sweeps out a cone. The
horizontal components cancel, and the vertical components combined to
give

B(z) =
µ0I

4π

∫
dl ′

r2
cos θ

Now, cos θ and r2 are constants, and
∫
dl ′ is simply the circumference,

2πR, so

B(z) =
µ0I

4π

(cos θ
r2

)
2πR =

µ0I

2

R2

(R2 + z2)3/2

It’s useful to gain experience working out the direction of the field fields
and verifying results that arise due to symmetry. After all, not all cases will
always be perfectly symmetrical.
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1.1.2 Helmholtz Coil

The magnetic field on the axis of a circular loop (Equation 2) is far from
uniform (it falls off sharply with increasing z). You can produce a more
nearly uniform field by using two such loops a distance d apart. We offset
the center of each loop by d/2 and set z = 0 to be halfway between them.
Then, the net field on the axis is, by the principle of superposition:

B(z) =
µ0IR

2

2

[ 1

(R2 + (z− d/2)2)3/2
+

1

(R2 + (z+ d/2)2)3/2

]
The derivative of B is

∂B(z)

∂z
= −

3

2

µ0IR
2

2

[ 2z− d

(R2 + (z− d/2)2)5/2
+

2z+ d

(R2 + (z+ d/2)2)5/2

]
Observe that the derivative is always zero at z = 0. Now the second

derivative is

∂2B(z)

∂z2
=
15

4

µ0IR
2

2

[ (2z− d)2

(R2 + (z− d/2)2)7/2
+

(2z+ d)2

(R2 + (z+ d/2)2)7/2

]
−
3

2

µ0IR
2

2

[ 2

(R2 + (z− d/2)2)5/2
+

2

(R2 + (z+ d/2)2)5/2

]
at z = 0

∂2B(z)

∂z2

∣∣∣∣∣
z=0

=
15

4

µ0IR
2

2

[
2

d2

(R2 + (d/2)2)7/2

]
−
3

2

µ0IR
2

2

[
2

2

(R2 + (d/2)2)5/2

]
=
µ0IR

2

2

[15
2

d2

(R2 + (d/2)2)7/2
−

6

(R2 + (d/2)2)5/2

]
imposing the condition ∂B(z)

∂z

∣∣∣∣∣
z=0

= 0 we find that

0 =
[15
2

d2

(R2 + (d/2)2)7/2
−

6

(R2 + (d/2)2)5/2

]
=
[15
2
d2 − 6R2 − 6(d/2)2

]
=
[
(
30

4
−
6

4
)d2 −

24

4
R2
]

= d2 − R2

Thus, the second derivative vanishes if d = R, in which case the field at

the center is

B(z = 0) =
(4
5

)3/2µ0I
R

if d = R (3)

For practical purposes the use of several turns in each coil is used. If each
coil has N turns the field is simply given by BT (z = 0) = NB(z = 0) which
can be conveniently expressed as B = 9.0× 10−7NIR .



charge-to-mass ratio 5

1.1.3 Charge to Mass

ĵ

k̂

î

ĵ

î

k̂

Figure 2: Electron inside the magnetic field of a Helmholtz coil

Consider a pair of Helmholtz coils both with a radius R and separated by
a distance d = R such that the magnetic field at the center (z = 0) is given
by Equation 3 and it’s on the k̂ direction. In the center of the coils there is
an electron tube from which electrons emerged (see Figure 2) with velocity
~v = vĵ. By the Lorentz force law, the electron at z = 0 experiences a force
given by

~Fz=0 = −e~v× ~B

= −evBĵ× k̂
= −evBî

The archetypical motion of a charged particle in a magnetic field is circu-
lar, with the magnetic force providing the centripetal acceleration as the elec-
tron changes velocity (the magnitude of v is unchanged, as B only projects
some of the speed onto the −î component). Newton’s second law gives
evB = mv2/r, or

v =
erB

m
To find an expression for v in terms of quantities that can be measured,

we note that the kinetic energy imparted to an electron within the tube is

given by eV where V si the potential difference through which the electrons

have been accelerated and is the voltage between the cathode and anode.

Then we get
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eV =
1

2
mv2

therefore

e

m
=

2V

r2B2

Combining this with Equation 3 we get for an N number of turns

e

m
=

V

I2r2

[(5
4

)3 2R2
N2µ20

]
(4)

Note that r is the radius of the electron’s orbit and R is the radius of the
coils. The constants R, N, and µ0 can be measured while different values of
V, I, and r must be obtained as they are dependent on each other.

1.2 Experiment

To start the experiment, consult with the instructor to see if the cables are
connected correctly. Then, activate the cathode check if you can see a blue
line of electrons straight upward in the glass chamber. To get the beam
focused, you should raise the cathode’s accelerating voltage until the elec-
trons were only negligibly scattered. Then, switch on the power for the
Helmholtz coils. They produce identical magnetic fields perpendicular to
their path that complement each other greatest at the center between them,
where we’d set up our electron beam. Depending on the current’s orienta-
tion, the electrons are either deflected in a soft arc toward or away from the
viewer. A cardboard box with a viewing slit should be utilized to diminish
outside light and make the electron beam more visible.

There are marker circles on the fluorescent screen. Make the electron
beam hit these circles by changing acceleration voltage and current through
the coils. This way you can measure the diameter of the electron beam path.
Make several measurements.

1.2.1 Tasks

• Measure the magnetic field of the Helmholtz coils using the hand-held
apparatus provided. Hold the magnetometer in different orientations
to see in which direction the magnetic field lines are aligned. How
does the magnetometer utilizes the Hall effect? Compare the mea-
sured magnetic field against the calculated field.

• Determine the charge to mass ratio.

1.2.2 Preparation key words

Calculation of e/m, magnetic field induced by a current, fields by coils, Biot-
Savart law, Maxwell equations, Hall effect.
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2 the franck-hertz experiment
The Franck-Hertz experiment was done in 1914. It was the first direct mea-
surement of quantization of energy levels in an atom1. It showed a set of
steps in the energy of a system that could only be explained at the time with
Bohr’s model of the atom which was proposed, unknowingly to Franck and
Hertz, a year earlier. Fig. 1 shows the experimental set up basically consist-
ing of a vacuum tube filled with mercury vapor, a heated cathode, an anode,
and a wire mesh placed in between the two nodes. A potential difference
is applied between the plates and the mesh grid. The first potential differ-
ence is used to accelerate the electrons through the vapor. The second only
allows electrons with some kinetic energy to collide with the collector.

The Cathode produces electrons that accelerate towards the mesh grid
and then collide with the collecting plate producing a current. The voltage
could be adjusted to create a larger acceleration and therefore was expected
to produce a larger current.

In the experiment special features were observed: if the electrons energy
exceeds a value of 4.9 eV the current dropped suddenly. This effect was
repeated at integer multiples of 4.9 eV. This is explained by the quantum
nature of the mercury vapor. At these energies the electrons are no longer
colliding with the atoms elastically. This energy of 4.9 eV is needed to excite
a mercury atom. The electron is then released after the excitation with less
kinetic energy due to a photon being emitted when the atom returns to the
non-excited state. The integer repetition is a result of the released electron
having another 4.9 eV to excite a mercury atom again.

2.1 Experiment

Our experiment is very similar to the one described above. The Franck-
Hertz tube is inside an oven that has to be maintained within a certain tem-
perature range. The oven assures that mercury stays in vapor form, which
does not occur at lower temperatures. An oscilloscope and the accelerating
voltage supply allow for the data acquisition.

The first run of the experiment should be done with a temperature set-
ting of 190oC. The temperature of the unit should be allowed to rise slowly
and then settle within this range. A periodic signal with linearly increasing
voltage is supplied. The current is to be measured as a function of voltage.
First, make yourself familiar with the operation of the oscilloscope. Show
the input voltage as a function of time, then show the output current as
function of time.

Use the x-y mode to display the current as a function of voltage. Take
measurements of current and voltage at different points of the curve to ac-
curately describe the measured curve.

The potential can be raised till the current drop of each integer voltage
is reached. This procedure can be used to get an accurate reading for the
current drops. Change the oven temperature to 180oC and take another
measurement. How does the oven temperature change the measured curve.

lchow
Sticky Note
190 C,    not 1900 C.
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What do you expect for even lower temperatures, and for higher tempera-
tures? Why do we not see any light being emitted from the experiment?

2.1.1 Preparation key words

Bohr’s model of the atom, energy levels of electrons in an atom, occupied
and unoccupied states, kinetic and potential energy, vapor pressure, thermal
activation

references
[1] Llewellyn, Ralph and Tipler, Paul Modern Physics 4th ed. New York: W.H.

Freeman and company, 2003

[2] Valerie Gordeski The Frank-Hertz Experiment Presentation Massachusetts
Institute of Technology

[3] Department of Physics and Astronomy Host of Hyperphysics, Georgia St.
University http://hyperphysics.phy-astr.gsu.edu/hbase/FrHz.html
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3 optical diffraction

3.1 Definitions

Definition 3.1. The principle of superposition states that when two or more
waves overlap, the resultant displacement at any point and at any instant is
found by adding the instantaneous displacements that would be produced
at the point by the individual waves if each were present alone.

Definition 3.2. Two monochromatic (single frequency) sources of the same
frequency and with a constant phase relation (not necessarily in phase) are
said to be coherent.

Definition 3.3. Let source S1 be a distance r1 from point P and let source
S2 be a distance r2 from point P.

• Constructive interference−→ r2 − r1 = mλ

• Constructive interference−→ r2 − r1 = (m+ 1/2)λ

where m = 0,±1,±2, ....

Definition 3.4. According to Huygen’s Principle, we can consider every
point of a wave as a source of secondary wavelets. These spread out in all
directions with a speed equal to the speed of propagation of the wave. The
position of the front at any later time is the "envelope" of the secondary
wavelets at that time.

Definition 3.5. Fresnel diffraction, or near-field diffraction, refers to when
both the point source and screen are relatively close to the obstacle forming
the diffraction pattern.

Definition 3.6. Fraunhofer diffraction, or Franhofer limit diffraction, refers
to situations in which the source, obstacle, and screen are far enough apart
that we can consider all lines from the source to the obstacle to be parallel,
and can likewise consider all lines from the obstacle to a given point on the
screen to be parallel.

Definition 3.7. The time-average expectation value of an electromagnetic
wave with period T is given by

< E2 >=
1

T

∫T
0

∣∣E∣∣2dt = 1

T

∫T
0
E∗Edt (5)

where E∗ is the complex conjugate of E.

Definition 3.8. The intensity of an electromagnetic wave is given by

I = K < E2 > (6)

where K is a constant and < E2 > is the time-averaged expectation value of
the electromagnetic wave.

3.2 Complex Sum

Consider the sum
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N−1∑
n=0

einδ = 1+ eiδ + e2iδ + · · ·+ ei(N−1)δ

multiplying by eiδ

eiδ
N−1∑
n=0

einδ = eiδ + e2iδ + e3iδ + · · ·+ eiNδ

then

N−1∑
n=0

einδ − eiδ
N−1∑
n=0

einδ =

N−1∑
n=0

einδ
(
1− eiδ

)
= 1− eiNδ

consequently

N−1∑
n=0

einδ =
1− eiNδ

1− eiδ

which is logically equivalent to

N−1∑
n=0

einδ =
1− eiNδ

1− eiδ
· 1− e

−iδ

1− e−iδ

=
1− e−iδ − eiNδ + eiNδ · e−iδ

1− e−iδ − e+iδ + 1

Note that 1 = ei
N
2 δ · e−iN2 δ = ei

1
2δ · e−i 12δ, eiNδ = ei

N
2 δ · eiN2 δ, and

e−iδ = e−i
1
2δ · e−i 12δ, therefore we can rewrite the sum as

N−1∑
n=0

einδ =
1

2− 2e
iδ+e−iδ

2

[(
ei
N
2 δ · e−i

N
2 δ · ei

1
2δ · e−i

1
2δ
)
−

(
ei
N
2 δ · e−i

N
2 δ · e−i

1
2δ · e−i

1
2δ
)
−(

ei
N
2 δ · ei

N
2 δ · ei

1
2δ · e−i

1
2δ
)
+(

ei
N
2 δ · ei

N
2 δ · e−i

1
2δ · e−i

1
2δ
)]

=
ei
N
2 δe−i

1
2δ

2− 2 cos δ

[(
e−i

N
2 δ · ei

1
2δ
)
−
(
e−i

N
2 δ · e−i

1
2δ
)
−(

ei
N
2 δ · ei

1
2δ
)
+
(
ei
N
2 δ · e−i

1
2δ
)]

=
ei
δ
2 (N−1)

2(1− cosδ)

[
−
(
ei
N
2 δ − e−i

N
2 δ
)(
ei
1
2δ − e−i

1
2δ
)]

= −
ei
δ
2 (N−1)

sin2 δ2
sin(

Nδ

2
) sin(

δ

2
)

Therefore
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N−1∑
n=0

einδ = −ei
δ
2 (N−1) sin Nδ2

sin δ2
(7)

3.3 Diffraction

Diffraction is a general term for interference effects related to edges or aper-
tures. Diffraction is more familiar in waves with longer wavelengths than
those of light. For example, diffraction is what causes sound to bend around
corners or spread as it passes through a doorway. Water waves spread as
they pass between rocks near a rugged coast because of diffraction. Two dif-
ferent regimes for diffraction are usually identified: Fresnel and Fraunhofer.

The phenomenon of diffraction can be understood using Huygens’s prin-
ciple (see Definition 3.4). According to Huygens’s principle, light waves
incident on slits will spread out and exhibit an interference pattern in the re-
gion beyond . The pattern is called a diffraction pattern (see Figure 3b). On
the other hand, if no bending occurs and the light wave continue to travel
in straight lines, then no diffraction pattern would be observed (see Figure
3a).

(a) Predicted outcome (b) What really happens

Figure 3: Single slit diffraction[?].

3.3.1 Single Slit Diffraction: Dark Fringes

Consider a plane wave incident of a single slit as shown on Figure 4. In
diffraction of Fraunhofer type (see Definition ??), all rays passing through
the slit are approximately parallel. In addition, each portion of the slit will
act as a source of light waves according to Huygens’s principle. For simplic-
ity we divide the slit into two halves.

The difference in path length ∆r to a point P far away from the source
(Fraunhofer limit) is D/2 sin θ, where D is the slit width and θ is the angle
between the perpendicular to the slit and a line from the center of the slit to
P. Suppose now that this path difference happens to be equal to λ/2; then
light from these two strips arrives at point P with half-cycle phase difference,
and cancellation occurs.

Similarly, we could have chosen to work with the light from two strips
immediately below the two points in the figure that also arrives at P. These
two half have the same path difference therefore they also arrive at point P
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r

r

Wave 1

Wave 2

D
2 sin θD

D
2

θ

D

D
2

Set up Fraunhofer limit
Figure 4: Single slit diffraction

a half-cycle out of phase. In fact, the light from every strip in the top half
of the slit cancels out the light rom a corresponding strip in the bottom half.
This implies that there is a dark fringe whenever

D

2
sin θ = ±λ

2
or

sin θ = ± λ
D

But Huygen’s principle says that we can treat every element of the area as
sources, therefore we could divide the screen into quarters, sixths, and so
on, and use the above argument to show that the condition for a dark fringe
is

sin θ =
mλ

D
(m = ±1,±2, ...) Dark Fringe (8)

3.3.2 Single Slit Diffraction: Intensity

Consider a single slit divided up into N very thin strips of width ∆y (see
Figure 5). Note that D = N∆y is an approximation which becomes exact in
the limit N→∞, ∆y→ 0 while keeping the product D = N∆y constant.

We choose the strip width such that ∆y << λ so that all the light from a
given strip is in phase. The strips are of equal size, and if the whole strip is
uniformly illuminated, we can take the electric field wave amplitudes from
each strip to be equal, i.e.

∆E0 =
E0
N

(9)

where E0 is the original amplitude and ∆E0 is the amplitude of each strip
wave.
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r

r

r

r

Wave 1

Wave 2

Wave 3

Wave N∆y sinθ

2∆y sinθ

(N− 1)∆y sinθ

D

∆y

Figure 5: N Slit diffraction

Consider wave 1 and wave 2. At any given point on a screen far away
(Franhofer limit), wave 1 travels a distance r1 = r while wave 2 travels a
distance r2 = r+ δr, where δr = ∆y sin θ is the path difference. This implies
a phase difference given by δ = k∆r = k(r2 − r1) = kδr = k∆y sin θ where
k = 2π/λ is the wave number. In general, the phase difference of each wave
after wave 1 is given by the n multiple of

δ =
2π∆y sin θ

λ
(10)

The amplitude of each strip wave is ∆E0, therefore we can express each
individual wave at a point x by

E1(x, t) = ∆E0ei(kx+ωt)

E2(x, t) = ∆E0ei(kx+ωt+δ)

E3(x, t) = ∆E0ei(kx+ωt+2δ)

...

EN(x, t) = ∆E0ei(kx+ωt+(N−1)δ)

The total electric field at a point P is given by the total contribution of
each wave, i.e.

E(x, t) = ∆E0
N−1∑
n=0

ei(kx+ωt+nδ)

by Equation 9 ∆E0 = E0/N, therefore

E(x, t) =
1

N
E0e

i(kx+ωt)
N−1∑
n=0

einδ

The sum is given by Equation 7. Then
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E(x, t) = −
1

N
E0e

i(kx+ωt)ei
δ
2 (N−1) sin Nδ2

sin δ2
For small angles θ, sin θ ≈ θ, therefore by Equation 10 δ is also small and

we may approximate sin δ2 ≈
δ
2 (note that N in general may be very large

and it would be wrong to assume that the product Nδ2 is small). Then

E(x, t) = −
1

N
E0e

i(kx+ωt)ei
δ
2 (N−1) sin Nδ2

δ
2

E(x, t) = −E0e
i(kx+ωt)ei

δ
2 (N−1) sin Nδ2

Nδ
2

By Equation 10, Nδ/2 = πN∆y sin θ/λ. But N∆y = D, therefore Nδ/2 =

πD sin θ/λ. Thus

E(x, t) = −E0e
i
(
kx+ωt+ δ

2 (N−1)
) sin

[
πD
λ sin θ

]
πD
λ sin θ

By Definition 3.7, the time-average of E is

< E2θ > =
1

T

∫T
0

∣∣E(x, t)
∣∣2dt

=
1

T
E20

∫T
0

(sin
[
πD
λ sin θ

]
πD
λ sin θ

)2
dt

since for any complex number z, |eiz| = eiz · e−iz = 1. Then

< E2θ > =
(
E0

sin
[
πD
λ sin θ

]
πD
λ sin θ

)2
By Definition 3.8, I0 = K < E20 >= KE

2
0. Then, the intensity as a function

of θ is given by

I(θ) = I0

(sin
[
πD
λ sin θ

]
πD
λ sin θ

)2
(11)

3.3.3 Single Slit Diffraction: Discussion

The intensity drops to 0 when sin
[
πD
λ sin θ

]
= 0. This can occur only when

πD
λ sin θ = 0 or πDλ sin θ = mπ (m = ±1,±2, ...).

• If πDλ sin θ = 0we also have a 0 in the denominator. Then, by l’hopital’srule,

lim
πD
λ sinθ→0

sin
[
πD
λ sin θ

]
πD
λ sin θ

= 1

and therefore I(θ = 0) = I0 is a max

.



optical diffraction 16

• πD
λ sin θ = mπ implies that there is a dark fringe whenever

sin θ = m
λ

D
m = ±1,±2, ...

in agreement with equation 8

The angle θ is small only if the wavelength is small compared to the slit
width. The plot of Equation 11 is shown in Figure 6 for the typical case
where λ = 500 nm and D = 10−2 cm, or λ/D = 1/200 (which implies θ is
small).

Figure 6: Diffraction intensity plot

As expected, for θ = 0→ sin θ = 0 the intensity is I0.

3.4 Interference

In order to form an interference pattern, the incident light must be coher-
ent and monochromatic. For example, light emitted from an incandescent
lightbulb is incoherent because the light consists o waves of different wave-
lengths and they do not maintain a constant phase relationship. Thus, no
interference pattern is observed.

In 1801 Thomas Young carried out an experiment in which the wave na-
ture of light was demonstrated. The schematic diagram of the double-slit
experiment is shown in Figure 7. A monochromatic light source is incident
on the first screen which contains a slit S0. The emerging light then arrives
at the second screen which has two parallel slits S1 and S2. which serve
as the sources of coherent light. The light waves emerging from the two
slits then interfere and form an interference pattern on the viewing screen.
The bright bands (fringes) correspond to interference maxima, and the dark
band interference minima.

3.4.1 Double Slit Interference

Figure 8 shows the double slit interference schematic in the Franhofer limit.
For any particular point P on the screen, wave 1 travels r1 = r and wave 2
travels r2 = r+ δr, where δr = d sin θ is the path difference. The condition
for constructive interference requires that r2 − r1 = mλ m = 0,±1,±2, ...,
therefore
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Figure 7: Young’s double slit experiment

r2 − r1 = d sin θ

or

d sin θ = mλ (m = 0,±1,±2, ...) Bright Fringe (12)

d d
θ

d sin θ

r

r

Wave 1

Wave 2

Set up Fraunhofer limit

Figure 8: Interference set up

Because wave 1 and wave 2 have a path difference δr when they arrive at
point P, this implies that they have a phase difference δ given by δr = k∆r =
k(r2 − r1) = kδr = kd sin θ, where k = 2π/λ is the wave number.

δ =
2πd sin θ

λ
(13)

We assume the strips are of equal size, and if the whole strip is uniformly
illuminated, we can take the electric field wave amplitudes E0 from each
strip to be equal. Then,
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E1(x, t) = ∆E0ei(ωt+kr)

E2(x, t) = ∆E0ei(ωt+kr+δ)

The electric field at point P is given by the sum of both fields, i.e.

E(x, t) = E0ei(ωt+kr) + E0ei(ωt+kr+δ)

For any complex z, |eiz| = eiz · e−iz = 1. Then,

∣∣E(x, t)
∣∣2 = E20

(
1+ 1+ e−1δ + eδ

)
= E20

(
2+ 2 cos δ

)
and given the identity 1+ cosα = 2 cos α2

∣∣E(x, t)
∣∣2 = 4E20 cos2

δ

2

By Definition 3.7, the time-average of E is

< E2θ > =
1

T

∫T
0

∣∣E(x, t)
∣∣2dt

=
4

T
E20

∫T
0

cos2
δ

2
dt

thus

< E2θ > = 4E20 cos2
δ

2

By Definition 3.8, I0 = K < E20 >= KE
2
0. Then, the intensity as a function

of θ is given by

I(θ) = 4I0 cos2
δ

2
Double Slit Intensity (14)

3.4.2 N Slit Interference

Figure 9 shows a generalization to N slits. Each wave may be described by

E1(x, t) = E0ei(ωt+kr)

E2(x, t) = E0ei(ωt+kr+δ)

E3(x, t) = E0ei(ωt+kr+2δ)

...

EN(x, t) = E0ei(ωt+kr+(N−1)δ)

or equivalently
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d
θ

d sin θ

2d sin θ

(N− 1)d sin θ

r

r

r

r

Wave 1

Wave 2

Wave 3

Wave N

Figure 9: N Slit Interference

EN(x, t) =
N−1∑
n=0

E0e
i(ωt+kr+nδ)

The sum is given by Equation 7. Then

E(x, t) = E0ei(kx+ωt)ei
δ
2 (N−1) sin Nδ2

sin δ2

By Definition 3.7, the time-average of E is

< E2θ > =
1

T

∫T
0

∣∣E(x, t)
∣∣2dt

=
1

T
E20

∫T
0

(sin
[
πdN
λ sin θ

]
πdN
λ sin θ

)2
dt

since for any complex number z, |eiz| = eiz · e−iz = 1. Then

< E2θ > =
(
E0

sin
[
πdN
λ sin θ

]
πdN
λ sin θ

)2
By Definition 3.8, I0 = K < E20 >= KE

2
0. Then, the intensity as a function

of θ is given by
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I(θ) = I0

(sin
[
πdN
λ sin θ

]
πdN
λ sin θ

)2
N Slit Intensity (15)

It can be shown that Equation 15 reduces to Equation 14 for N = 2.

3.4.3 Discussion

For two sources with electric fields E1 and E2, the total instantaneous elec-
tric field E at the point P on the screen is equal to the vector sum of the two
sources: E = E1+E2. On the other hand, the Poynting flux S is proportional
to the square of the total field:

S ∝ |E|2 = |E1 + E2|
2 = |E1|

2 + |E2|
2 + 2E1 · E2

Taking the time average of S, the intensity I on the light at P may be

obtained as

I =< S >∝< E21 > + < E22 > +2 < E1 · E2 >

The cross term 2 < E1 · E2 > represents the correlation between the two
light waves. For incoherent light sources, since there is no definite phase
relation between E1 and E2, the cross term vanishes, and the intensity due
to the incoherent source is simply the sum of the two individual intensities:

Iincoherent = I1 + I2

For coherent sources, the cross term is non-zero. In fact, as it was shown,

for constructive interference in a two source system, the resulting intensity is

Icoherent = 2
2I0

In fact, it can be shown that, in general, for N coherent sources

Icoh = N2I0

(a) N = 2 (b) N = 3

Figure 10: Interference intensity.



optical diffraction 21

3.5 Diffraction and Interference

Suppose that we have two slits, each having a width D, and separated by
a distance d. As discussed, both slits will behave as lights sources and we
refer to their interaction as interference. Also, each individual slit causes
the light to bend and we refer to such effect as diffraction. The intensity for
the double slit interference is given by Equation 14 and the intensity for a
single slit diffraction is given by 11. The resulting interference pattern for
the double slit will also include a diffraction pattern due to the individual
slit. The combined effect (for small angles θ) is then

I(θ) = 4I0 cos2
πd sin θ
λ

I0

(sin
[
πD
λ sin θ

]
πD
λ sin θ

)2
(16)

Figure 11: Double slit interference and diffraction intensity.

Figure 11 shows the intensity plot of for a double slit with with slit width
of D = 10−2 cm and a separation between the widths of d = 4D with a
source wavelength of λ = 500 nm. The first and the second terms in the
above equation are referred to as the “interference factor” and the “diffrac-
tion factor,” respectively. While the former yields the interference substruc-
ture, the latter acts as an envelope which sets limits on the number of the
interference peaks (see Figure 11).

(a) N = 10 (b) N = 30

Figure 12: Interference and diffraction intensity.
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3.5.1 Diffraction Gratings

A diffraction grating consists of a large number N of slits each of width D
and separated from the next by a distance d. In general, for N slits:

I(θ) = I0N
2
(sin

[
πdN
λ sin θ

]
sin
[
πdN
λ sin θ

])2(sin
[
πD
λ sin θ

]
sin
[
πD
λ sin θ

])2 (17)

Figure 12 shows the intensity plot for a grating with N = 10 and N = 30

slits with with slit width of D = 10−2 cm and a separation between the
widths of d = 4D with a source wavelength of λ = 500 nm. The location of
the maxima does not depend on the number of slits, N. However, the max-
ima become sharper and more intense as N is increased. The width of the
maxima can be shown to be inversely proportional to N. Notice in Figure
12 that the principal maxima become sharper and narrower as N increases.

Diffraction gratings are usually label as g = slits/millimeter; the number of
slits N in a particular grating is then given by N = dg; the value d is then
the reciprocal of the number of slits per unit length.

Example 3.1. You have been given a grating labeled as 1000 lines/mm. This
is equivalent to 1000 slits/mm, or

d =
mm

1000
=
10−3

103
m = 10−6 = 1 µm

which is a typical value for d. Using a red laser of wavelength λ = 650nm

we expect to find the first order maxima at

d sin θ = ±mλ = ±λ

θ = ±sin−(
λ

d
)

= ±sin−(
650 · 10−9

10−6
)

= ±sin−(.650)

= ±40.5 degrees

Up until now we have assume that the plane waves incident on the slits
are parallel to the slits. This is not generally true. Suppose that we have a
source S0 that makes an angle α with the normal of the diffraction grating
(see Figure 13). Also, a detector D is placed so that it makes an angle θ with
the normal of the diffraction grating.

The bottom wave travels a distance r+ δr1 and the top travels a distance
r+ δr2, where δr1 = d sin θ and δr2 = d sinα. The path difference ∆r is
then d(sinα− sin θ). Then, the constructive interference requires

d(sinα− sin θ) = mλ m = 0,±1,±2, ... (18)

3.6 Experiment

3.6.1 Tasks

• Use the laser to set up an experiment to measure the diffraction of the
light on a periodic lattice.
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dθ

θ
sinα

α

sin θ

S0

D

Figure 13: Diffraction grating

• Use lenses to spread the laser beam on an optical bench and produce
a parallel beam on the spectrometer.

• Measure the scattering angles of diffraction maxima for the incident
beam perpendicular to the optical grating.

• Repeat this measurement for a tilted grating.

• Calculate the lattice spacing if the wavelength is known.

3.6.2 Preparation key words

Lasers, characteristic emission lines from gases, absorption, diffraction, in-
terference, coherence, diffraction grating, single slit experiment, Fraunhofer
approximation, Huygens principle, explanation of diffraction maxima and
minima in the far-field.
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4 ac circuits

4.1 Review of Classical Circuits

In this section we consider circuits which have a constant (time-independent)
source ε.

4.1.1 RC Circuit

ε C

R

Figure 14: RC Circuit schematic diagram

The underlying principle behind the operation of an RC circuit is given
by

∮
~E · ~ds = 0

Then

VR + VC =Vin

Ri+
q

C
=ε

dq

dt
=
1

R
(ε−

q

C
)

=−
1

RC
(q− εC)

rearranging and integrating

∫q
q0

dq ′

q ′ − εC
=−

1

RC

∫t
0
dt

ln(
q− εC

q0 − εC
) =−

t

RC

q(t) =εC+ (q0 − εc)e
−t/RC

=q0e
−t/RC + εC(1− e−t/RC)

but εC = qmax. Then

q(t) =q0e
−t/RC + qmax(1− e

−t/RC)

also

I(t) =
dq(t)

dt
=
q0
RC
e−t/RC +

qmax

RC
e−t/RC

but qmaxRC = εC
RC = ε

R = Imax and q0
R = V0C

RC = v0
R = I0. Then
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I(t) =(Imax − Io)e
−t/RC

Finally

V(t) =
q(t)

C
=
q0
C
e−t/RC +

qmax

C
(1− e−t/RC)

but qmaxC = εC
C = ε and q0

c = V0. Then

V(t) =v0e
−t/RC + ε(1− e−t/RC)

Example 4.1. Charging capacitor

Let q0 = 0. Then

q(t) =qmax(1− e
−t/RC)

I(t) =Imaxe
−t/RC

V(t) =ε(1− e−t/RC)

Example 4.2. Discharging capacitor

Let ε = 0 −→ Qmax = εC = 0, Imax = ε/R = 0. Then

q(t) =q0e
−t/RC

I(t) =− Ioe
−t/RC

V(t) =v0e
−t/RC

4.1.2 RL Circuit

ε L

R

Figure 15: RL Circuit schematic diagram

When an inductor is present,

∮
~E · ~ds 6=0

but rather

−
d

dt

∫∫
~B · ~dA =

∮
~E · ~ds

Then



ac circuits 26

−L
di

dt
=− ε+ iR

−
L

R

di

dt
=−

ε

R
+ i

rearranging and integrating

∫ i
i0

di ′

i ′ − ε/R
=−

1

L/R

∫t
0
dt

ln(
i− ε/R

i0 − ε/R
) =−

t

L/R

I(t) =ε/R+ (i0 − ε/R)e
−t/L/R

=i0e
−t/L/R + ε/R(1− e−t/L/R)

but ε/R = imax. Then

I(t) =q0e
−t/L/R + imax(1− e

−t/L/R)

Example 4.3. Increasing current

Let i0 = 0. Then

I(t) =Imax(1− e
−t/τ)

where τ = L/R

Example 4.4. Decreasing current

Let ε = 0 −→ Imax = ε/R = 0. Then

I(t) =− Ioe
−t/τ

where τ = L/R

4.1.3 LC Circuit

ε C

L

Figure 16: LC Circuit schematic diagram

The underlying principle behind the operation of an LC circuit is given
by conservation of energy, i.e.

dU

dt
= 0

Then
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U = UC +UL =
1

2

q2

C
+
1

2
LI2

0 =
dU

dt
=
q

C

dq

dt
+ LI

di

dt

=
q

C
I+ LI

d2q

dt2

=
q

C
+ L

d2q

dt2

d2q

dt2
= −

q

LC

Letting ω0 = 1/
√
LC the solution is given by

q(t) = A cosω0t+B sinω0t

Because charge is conserved, we can expect that the constants A and B

will shift the phase of the charge motion while keeping the charge constant.

Then, let

A = q0 cosα

B = −q0 sinα

where α is some arbitrary phase constant given by the initial conditions.

Thus

q(t) = q0 cosω0t cosα− q0 sinω0t sinα

= q0 cos(ω0t+α)

similarly

I(t) = ω0q0 sin(ω0t+α)

= I0 sin(ω0t+α)

where ω0t = I0

Example 4.5. Initial charge

Let q(t = 0) = q0. Then

q(t = 0) = q0 = q0 cosα

which implies that α = 0.

4.1.4 LRC Circuit

When a resistor is placed on an LC circuit energy is no longer conserved,
i.e.

dU

dt
6 = 0

but rather
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dU

dt
= −I2R

Then

U = UC +UL =
1

2

q2

C
+
1

2
LI2

−I2R =
dU

dt
=
q

C

dq

dt
+ LI

di

dt

−I2R =
q

C
I+ LI

d2q

dt2

−IR =
q

C
+ L

d2q

dt2

0 =
d2q

dt2
+
R

L

dq

dt
+
q

LC

letting 2γ = 1
L/R

and ω20 = 1
LC we can rewrite the differential equation to

0 =
d2q

dt2
+ 2γ

dq

dt
+ω20q

Letting q(t) = q0eω±t and inserting into the differential equation we get

ω2x0e
ω±t + γωx0e

ω±t +ω20x0e
ω±t = 0

ω2 + 2γω+ω20 = 0

The roots are given by

ω± = −γ±
√
γ2 −ω20

and the solution, in general, is given by a linear combination of both
solutions

x(t) = x0e
−γt

(
c+e

√
γ2−ω20t + c−e

−
√
γ2−ω20t

)

Letting δ =
√
γ2 −ω20 and c+ = c− = 1

2 , the following cases apply

• underdamped if δ2 < 0 → x(t) = x0e
−γt sin δt

• overdamped if δ2 > 0 → x(t) = x0e
−γt sinh δt

• critically damped if δ2 = 0 → x(t) = x0e
−γt

4.2 The Impedance Model

The analysis of circuits where the source is time-dependent can be greatly
simplified with the used of complex analysis and the impedance model.
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Vin ˜ C↓i

R −→i

Vout

Figure 17: RC Circuit with AC source schematic diagram w

Example 4.6. RC Time-Dependent Circuit

Consider an input voltage given by vin = V0e
jωt. Because the input

is time- dependent, we expect the voltage across the capacitor (and the re-
sistor) to be time-dependent as well. Then, let us denote such voltage by
vc = V1e

j(ωt+δ), where δ is a possible phase difference with the source.
Following the same approach as in the time-independent RC circuit, and
assuming that the measuring device (see Figure 20a) has a large enough
resistance so that negligible current goes through it, we let

VR + VC = Vin

Ri(t) + V1e
j(ωt+δ) = V0e

jωt

but C = q(t)/v(t), therefore i(t) = dq(t)
dt = C

dv(t)
dt . Then

jωRCV1e
j(ωt+δ) + V1e

j(ωt+δ) = V0e
jωt

V1e
j(ωt+δ)(jωRC+ 1) = V0e

jωt

V1 = V0
1

1+ jωRC
e−jδ

the "actual" voltage is given by the magnitude of the complex voltage. In

particular, we are interested in the ratio

∣∣∣V1
V0

∣∣∣ = ∣∣∣ 1

1+ jωRC

∣∣∣
=

1√
1+ω2R2C2

We can analyze (see Figure 18) the circuit by considering the limiting
cases:

• limω→0 |v1/v0| = 1

• limω→∞ |v1/v0| =
1

ωRC

• lim
ω→ 1

RC
|v1/v0| =

1√
2

Note:ω = 1
RC is called the break frequency
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↗
≈ 1
1ωRC

1
RC

ω

|v1/v0|

Figure 18: AC Circuit with an AC source plot

4.2.1 The Transfer Function

Observe that

1

1+ jωRC
≡ 1/jωC

1/jωC+ R

It can also be shown (you can work this out yourself) that if in the previous

example the voltage had been measured through the resistor R instead of C,

i.e. Vout = VR, the resulting relation would have been

∣∣∣V1R
V0

∣∣∣ = ∣∣∣ R

1/jωC+ R

∣∣∣
this provides motivation for the following definitions.

Definition 4.1. Electrical Impedance

Electrical impedance Z is the measure of the opposition that a circuit
presents to a current when an alternating voltage is applied. In quantitative
terms, it is the complex ratio of the voltage V(t) to the current I(t), i.e.

Z =
V(t)

I(t)

For a circuit with impedances Z1,Z2, ..., the total impedance can be ob-

tained by

ZT =
∑
i

Zi (For circuits in series)

ZT =
∑
i

1

Zi
(For circuits in parallel)

Definition 4.2. Transfer Function

We can define a transfer function H(jω) that represents, in terms of spa-
tial or temporal frequency, the relation between the input and output of a
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linear time-invariant system. The magnitude of the transfer function may
be represented as

|H(jω)| =
Zout

Ztotal
(19)

Example 4.7. Impedance ZC

The impedance of a capacitor may be easily derive the following way.
Suppose the capacitor has a current ic(t) = ICe

jωt and a voltage vc(t) =

VCe
jωt. Recall that for capacitors

ic(t) = C
dvc(t)

dt

ICe
jωt = jωCVCe

jωt

IC = jωCVC

therefore

ZC =
VC
IC

=
1

jωC

The impedances for some common components are shown in Figure 19.

R L CZR = R ZL = jωL ZC = 1
jωC

Figure 19: Complex impedances

Figures 20 and 21 show a summary of the RC and RL circuits. These plots
can be simply understood the following way (see Figure 19):

• For small ω, ZC becomes huge and it acts as an open (infinite re-
sistance). Then we expect that if we measure across the resistor no
voltage difference (potential) would be measure. Conversely, for large
ω, ZC becomes very small and it acts as a short (zero resistance). Then
we expect that if we measure across the resistor we would have a one-
to-one relation without any voltage drop. These effects are seen in
Figure 20d.

• For small ω, ZC becomes huge and it acts as an open (infinite resis-
tance). Then we expect that if we measure across the capacitor all volt-
age the difference or drop would be measure. Conversely, for large ω,
ZC becomes very small and it acts as a short (zero resistance), there-
fore no voltage drop would be measured. These effects are seen in
Figure 20b.
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|H(ω)|

|H(ω)|

ω

ω

(a) VC Output. (b) VC Output plot.

(c) VR Output. (d) VR Output plot.

Figure 20: RC Circuit summary.

• For large ω, ZL becomes huge and it acts as an open (infinite resis-
tance). Then we expect that if we measure across the resistor no volt-
age difference (potential) would be measure. Conversely, for small ω,
ZL becomes very small and it acts as a short (zero resistance). Then
we expect that if we measure across the resistor we would have a one-
to-one relation without any voltage drop. These effects are seen in
Figure 20d.

• For large ω, ZL becomes huge and it acts as an open (infinite resis-
tance). Then we expect that if we measure across the inductor all volt-
age the difference or drop would be measure. Conversely, for small ω,
ZL becomes very small and it acts as a short (zero resistance), therefore
no voltage drop would be measured. These effects are seen in Figure
21b.

4.2.2 Filters

Consider Figures 20d and 21d. In both cases we measure the voltage out-
put across the resistor (Figures 20c and 21c). What would happen if we
combined the two plots?

Example 4.8. RLC Circuit

Consider an RLC circuit with an AC source as shown of FIgure 22.
Suppose that we want to measure the output across the resistor. Accord-

ing to Definition 4.1, we can get the total impedance by adding the individ-
ual impedances for circuits in series, i.e.
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|H(ω)|

|H(ω)|

ω

ω

(a) VL Output. (b) VL Output plot.

(c) VR Output. (d) VR Output plot.

Figure 21: RL Circuit summary.

ZT = ZR +ZC +ZL

= R+
1

jωC
+ jωL

and, according to Definition 19, the transfer function is then given by

H(jω) =
R

R+ 1
jωC + jωL

=
R

R− j
ωC + jωL

=
ωRC

ωRC− j+ jω2CL

=
ωRC

ωRC− j(1−ω2CL)

therefore

|H(ω)| =
ωRC√

(ωRC)2 + (1−ω2CL)2

It’s useful to recognize the shape of |H(ω)| quickly. The following method
provides a useful approach for doing so:
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Vin ˜ L↓i

Vout

R
−→i

C

Figure 22: RLC Circuit

• as ω→∞
(1−ω2CL)2 → ω4C2L2

(ωRC)2 + (1−ω2CL)2 → (ωRC)2 +ω4C2L2

→ ω4C2L2

therefore

|H(jω)|→ R

ωL
unit power decay

• as ω→ 0

(1−ω2CL)2 → 1

(ωRC)2 + (1−ω2CL)2 → 0+ 1

therefore

|H(jω)|→ ωRC linear decay

• Finally, you may verify that as ω→ 1√
LC

|H(jω)|→ 1

Conversely, we would expect the opposite outcome if we had measured
the voltage across the capacitor and inductor. In particular, the resonance
frequency ω0 occurs when the impedance effects of the capacitor and in-
ductor cancel each other, i.e.

0 = ZC +ZL

=
1

jωC
+ jωL

= −
j

ωC
+ jωL

= −1+ω2CL

therefore

ω0 =
1√
LC
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(a) RLC Band-pass filter. (b) RLC Band-stop filter.

Figure 23: RLC Filter.

Let L = 1/3 H, C = 1/3 F and R = 1/2 Ω. This implies a resonance
frequency of ω0 = 3 rad/s. Figure 23 shows the plot of |H(ω)| for an out-
put taken across the resistor (Figure 23a) and an output taken across both
inductor and capacitor (Figure 23b). These are refer to as band-pass and
band-stop filters. Other combinations may yield low-pass and high-pass
filters (see Figures 20 and 21).

4.2.3 Quality Factor Q

Definition 4.3. Quality factor Q

The quality factor Q is defines as

Q =
ω0
∆ω

whereω0 is the resonance frequency and ∆ω is the band width at |H(ω)| =

1/
√
2.

In general, the higher the quality factor Q, the more selective the circuit.

Example 4.9. Quality factor Q on an RLC circuit

We have seen that in an RLC circuit, when the output is taken across the
resistance:

|H(ω)| =
ωRC√

(ωRC)2 + (1−ω2CL)2

then

H(ω) = ± 1√
2
=

ωRC√
(ωRC)2 + (1−ω2CL)2

=
1√

(1+ ( 1
ωRC − ωL

R )2

this implies

±1 = 1

ωRC
−
ωL

R

0 = ω2 ∓ωR
L
−
1

CL
the roots are given by
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(a) RLC Band-pass filter. (b) RLC Band-stop filter.

Figure 24: RLC Filter with different Q values.

ω1 = −
R

2L
−
1

2

√
R2

L2
− 4

1

CL

ω2 = +
R

2L
−
1

2

√
R2

L2
− 4

1

CL
therefore

∆ω = ω2 −ω1 =
R

L

Also, recall that ω0 = 1/
√
CL. Then

Q =
ω0
∆ω

=
1√
CL

L

R
=

√
L

C

1

R

thus, the lower the resistance, the sharper the peak

Figure 24 shows an RLC circuit with resistors R1 = 1
2 Ω, R2 = 1

3 Ω,R3 =

2Ω, and R4 = 3 : Ω.

4.3 Experiment

A Proto Board PB-503 is available. You can generate a signal through the
right TTL pins (the left are used for the ground). There are two outputs
for the Oscilloscope signal. Use the ‘Pin’ for the signal and ‘shell’ for the
ground. There are vertical lines of pins available, which are all on the same
level for each individual vertical line. There are also horizontal sets of pins
on the same level.

4.3.1 Tasks

• Build a high-pass filter and measure |H(ω)| as function of frequency.
Measure and report the resonance frequency and the quality factor.
Compared these values to the theoretical expectations and repeat for
different quality factors.

• Build a low-pass filter and measure |H(ω)| as function of frequency.
Measure and report the resonance frequency and the quality factor.
Compared these values to the theoretical expectations and repeat for
different quality factors.
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• Build a band-pass filter and measure |H(ω)| as function of frequency.
Measure and report the resonance frequency and the quality factor.
Compared these values to the theoretical expectations and repeat for
different quality factors.

• Build a band-stop filter and measure |H(ω)| as function of frequency.
Measure and report the resonance frequency and the quality factor.
Compared these values to the theoretical expectations and repeat for
different quality factors.

• Measure the characteristics I(V) of a diode. You need to think about
the design of this experiment before you do it. You may be able to use
the math (+-) option of the oscilloscope.

When choosing the components (inductors, resistors, or capacitors), en-
sure that their values make sense. Work out the mathematics of the circuit
with different values before doing the experiment. Know what to expect.

4.3.2 Preparation key words

RC circuits and their mathematical description, complex numbers, phase
shift, measurement of currents and voltages, differential equations describ-
ing electric circuits (and their solutions in the presence of a periodic input
signal and in the case of off-on DC input), Physics of a pn-junctions, diode
characteristics, principle of a transistor.

references
[1] Serway, Raymond, John Jewett, Jr Physics For Scientists and Engineers Vol.

2. California: Brooks and Cole, 2004.

[2] Wolfson and Pasachoff Physics 3rd ed. Reading, MA: Addison Wesley,
1999.
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5 nuclear spectroscopy
The first information about the atomic nucleus came with the discovery of
radioactivity by A. H. Becquerel in 1896. The rays emitted by radioactive
nuclei were first classified by Rutherford as alpha α, beta β, and gamma γ,
according to their ability to penetrate matter and to ionize air: α radiation
(4He nucleus) penetrates the least and produces the most ionization, γ (elec-
tromagnetic) radiation penetrates the most with the least ionization, and β
radiation (e±) is intermediate between them.

5.1 Radioactivity

In 1900 Rutherford discovered that the rate of emission of radiation from a
substance was not constant but decreased exponentially with time. This ex-
ponential time dependence is characteristic of all radioactivity and indicates
that it is a statistical process.

For a statistical decay (in which the decay of any individual nucleus is
a random event), the number of nuclei decaying in a time interval dt is
proportional to dt and to the number of nuclei present. IfN(t) is the number
or radioactive nuclei at time t and −dN is he number that decay in dt, we
have

−dN = λNdt

where λ is a proportionality constant called the decay constant. The solution
of this differential equation is given by

N(t) = N0e
−λt (20)

Definition 5.1. The decay rate of a radioactive process is defined as

R = −
dN

dt
= λN0e

−λt = R0e
−λt (21)

Note that both the number of nuclei and the rate of decay decrease ex-
ponetially with time. It is the decrease in the rate of decay that is determined
experimentally.

Definition 5.2. The mean life time of a radioactive process is define as

τ =

∫∞
0
tf(t)dt (22)

where f(t)dt is the fraction of nuclei with lifetimes between t and t+ dt.

Problem 5.1. Calculate the mean life time of a radioactive process with de-
cay constant λ and a number of nuclei N.

Solution: The number of nuclei with lifetimes between t and t+ dt is the
number that decay in dt, which is λNdt; thus the fraction with lifetimes in
dt is

f(t)dt =
λNdt

N0
= λe−λtdt

from Equation 22, the mean life time is given by

τ =

∫∞
0
tf(t)dt =

∫∞
0
tλe−λtdt =

1

λ

which is the reciprocal of the decay constant λ.
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Definition 5.3. The half life t1/2 is defined as the time after which the
number of radioactive nuclei has decrease to half its original value.

Problem 5.2. Find the half life of a radioactive process with a mean life time
τ.

Solution: From Equation 20

1

2
N0 = N0e

−λt1/2 → eλt1/2 = 2

this implies

t1/2 =
ln2

λ
= 0.693τ

5.2 Radiation Sources

Radiation sources can be conveniently classified into four categories:

• Charged particulate radiation

– Fast electrons (β± particles emitted in nuclear decay, as well as
energetic electrons produced by any other process)

– Heavy charged particles (all energetic ions with M > 1amu)

• Uncharged radiation

– Electromagnetic radiation (x-rays and γ rays)

– Neutrons (slow and fast neutrons generated by nuclear processes)

5.2.1 Fast Electron Sources

Fast electron sources include beta decay, internal conversion, and Auger
electrons. The most common source of fast electrons in radiation measure-
ments is a radioisotope that decays by beta-minus emission. The process is
written schematically

A
ZX→

A
Z+1 Y +β

− + ν (23)

where X and Y are the initial and final nuclear species, and ν is the antineu-
trino.

5.2.2 Heavy Charged Particle Sources

Heavy charged particle sources include alpha decay and spontaneous fis-
sion. The probability of decay is governed by the barrier penetration mech-
anism described in most texts on nuclear physics, and the half-life of useful
sources varies from days to many thousands of years. The decay process is
written schematically as

A
ZX→

A−4
Z−2 Y +

4
2 α (24)

where X and Y are the initial and final nuclear species.

5.2.3 Sources of Electromagnetic Radiation

Sources of electromagnetic radiation include gamma rays following beta de-
cay, annihilation radiation, gamma rays following nuclear reactions, bremsstrahlung,
characteristic x-rays and synchrotron radiation.
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5.3 Scintillation Detector Principles

Definition 5.4. Luminescence is emission of light by a substance not result-
ing from heat; it is thus a form of cold body radiation.

Definition 5.5. An scintillator is a material that exhibits scintillation – the
property of luminescence when excited by ionizing radiation.

The detection of ionizing radiation by the scintillation light produced by
certain materials, as shown of FIgure 25c, is one of the oldest techniques
used to analyze ionizing radiation. Images could be collected or intensity
measurements could be made. Measurements were also made with the hu-
man eye observing the brightness of frequency of flashes in the scintillator.
Modern detection techniques employ the use of photomultiplier tubes or
photodiodes to convert the light into an electrical pulse. In general, the pur-
pose of scintillation detectors is to produce a large light output (caused by
ionizing radiation) in the visible range. There are two types of scintillators:
organic and inorganic crystals. The inorganic tend to have the best light
output and linearity, but with several exceptions are relatively slow in their
response time. In this lab you will use the inorganic alkali halide crystal
sodium iodide (NaI).

5.3.1 Inorganic Scintillators

The scintillation mechanism in inorganic materials depends on the energy
states of the crystal structure of the material. For a given crystal structure,
electrons can only exists in discrete energy levels (see Figure 25a). The va-
lence band represents states of lower energy for electrons that are free to
travel through the crystal without being bound to a specific atom, whereas
the conduction band represents states at higher energy for electrons that are
free to travel. For semiconductors and insulates, between these two bands
is the band gap, or forbidden band, in which electrons are not allowed to
exists.

For a pure crystal, the vast majority of conduction electrons are in the
valence band while the conduction band is essentially free of electrons, the
energy states in the conduction band and almost all unoccupied. When an
electron absorbs energy it can jump the band gap to the conduction band,
leaving a hole in the normally filled valence band. The return of the electron
to the valence band with a photon is an inefficient process. Furthermore,
when this return does occur the resulting photon is of too high energy to lie
in the visible range.

To enhance the probability of visible photon emission during the de-
excitation process, small amounts of an impurity are commonly added to
inorganic scintillators, a procedure commonly referred to as doping. Such
deliberately added impurities, called activators, create special sites in the
lattice at which the normal energy band structure is modified from that of
the pure crystal. As a result, there will be energy states created within the
forbidden gap through which the electron can de-excite back to the valence
band.

Because the energy is less than that of the full forbidden gap, this transi-
tion can now give rise to a visible photon and therefore serve as the basis of
the scintillation process. A charged particle passing through the detection
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(a) Pure crystal energy band diagram. (b) Activated energy band diagram.

(c) Luminescence of scintillator. (d) Encased scintillator.

Figure 25: Sodium Iodide Thallium activated.

medium will form a large number of electron-hole pairs created by the el-
evation of electrons from the valence to the conduction band. The positive
hole will quickly drift to the location of an activator site and ionize it, be-
cause the ionization energy of the impurity will be less than that of a typical
lattice site. Meanwhile, the electron is free to migrate through the crystal
and will do so until it encounters such an ionized activator. At this point
the electron can drop into the activator site, creating a neutral configuration
that can have its own set of excited energy states (see Figure 25b).

5.3.2 NaI (Tl) Scintillator

Most scintillators reported in the literature are implemented in wide-gap
insulating materials doped (“activated”) with radiation centers. A classical
example of a solid-state scintillator is sodium iodide activated with thallium
(NaI:Tl), introduced by Hofstadter[3] more than 60 years ago.

Problem 5.3. Given a 1 MeV particle energy, what is the resulting number
and average energy of the photons created due to the ionizing radiation in
a NaI:Tl scintillator?

Solution: A measure of the efficiency of the scintillation process follows
from a simple energy calculation (see Figure 25b). For a wide category
of materials, it takes on the average about three times the bandgap en-
ergy to create one electron-hole pair. In sodium iodide, this means about
20eV of charged particle energy must be lost to create one electron-hole
pair. For 1MeV of particle energy deposited in the scintillator, about 5 · 104
electron-hole pairs are thus created. Various experimental determinations
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have shown that the absolute scintillation efficiency of thallium-activated
sodium iodide is about 12%. Absorption of 1MeV of energy should there-
fore yield about 1.25 · 105 eV in total light energy, or 4 · 104 photons with an
average energy of 3eV . The yield is thus very close to 1 photon per electron-
hole pair originally formed, and the energy transfer to activator sites must
be extremely efficient.[4][5] Typically, scintillator crystals are enclosed in a
metal case as shown on Figure 25c and 25d.

The dominant decay time of the scintillation pulse is 230 ns, uncomfort-
ably long for some fast timing or high counting rate applications. In addi-
tion to this prompt yield, a phosphorescence with characteristic 0.15 s decay
time has also been measured,[7] which contributes about 9% to the overall
light yield. Other longer-lived phosphorescence components have also been
measured. Because the anode time constant of photomultiplier tubes is usu-
ally set much shorter than these decay times, each photoelectron associated
with the phosphorescence is normally resolved individually.

5.4 Photomultiplier Tubes and Photodiodes

As previously mentioned, modern techniques require a mechanism to con-
vert extremely low light output to a useful electrical signal. This is the
purpose of the photomultiplier (PM) tube. A simplified diagram of a PM
tube is shown on Figure 26. The vacuum enclosure is required to accelerate
low energy electrons effectively by internal electric fields. The electron mul-
tiplier section in a PM tube provides an efficient collection geometry for the
photoelectrons as well as serving as a near-ideal amplifier to greatly increase
their number. After amplification through the multiplier structure, a typical
scintillation pulse will give rise to 107 − 1010 electrons, sufficient to serve as
the charge signal for the original scintillation event. This charge is conven-
tionally collected at the anode or output stage of the multiplier structure.
The PM has two main structures: the photosensitive layer (photocathode)
and the electron multiplier structure.

5.4.1 Cathode Structure

The general purpose of the cathode structure is to convert as many photons
to low energy electrons as possible. We can generalized the method by
which the cathode can achieve this in three steps.

• Absorption of the photon’s energy

• Migration of the electron to the surface of the cathode

• Escape of the electron from the surface of the cathode

Each of these steps must be taken into consideration when choosing the
material and the materials’ geometry of the cathode.

Absorption The absorption is limited by the amount of energy hv carried
by the photon.

Migration As the electrons travel towards the surface of the cathode after
absorbing the photon’s energy, some of this energy is lost due to collisions.
The rate of energy loss in metals is relatively high, and an electron can travel
no more than a few nanometers before its energy drops below the potential
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Figure 26: Basic elements of a PM tube[8]

barrier. Therefore, only the very thin layer of material lying within a few
nanometers of the surface will contribute any photoelectrons from common
metals. In semiconductors, the rate of energy loss is much lower and the
escape depth can extend to about 25 nm. This, however, is still a very small
thickness even with respect to stopping visible light. Photocathodes of this
thickness are semitransparent and will cause less than half the visible light
to interact within the photosensitive layer. Therefore, such photocathodes
cannot come close to converting all the visible light photons into electrons,
no matter how low the potential barrier may be.

Escape Finally, in the escape, there must be sufficient energy left for the
electron to overcome the inherent potential barrier that always exists at any
interface between material and vacuum. This potential barrier (often called
the work function) is normally greater than 3 or 4 eV for most metals but
can be as low as 1.5− 2 eV for suitably prepared semiconductors.

A unit of great significance in scintillation counting is the quantum effi-
ciency (QE) of the photocathode. The quantum efficiency is simply defined
as

QE =
number of photoelectrons emitted

number of incident photons

The quantum efficiency would be 100% for an ideal photocathode. Because
of the limitations mentioned earlier, practical photocathodes show maxi-
mum quantum efficiencies of 20% − 30%[1].

Problem 5.4. Given a 1 MeV particle energy, what is the resulting number
and average energy of photoelectrons emitted from set up that uses a NaI:Tl
scintillator and a PM tube with an efficiency of 20%?
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Solution: From the previous problem, 4 · 104 photons are created. This
implies that about 8 · 103 photoelectrons are emitted from the cathode. Since
the average energy of the photons is 3 eV, and most of this energy is lost
due to the work function, the average energy of the emitted photoelectrons
is typically of 1 eV or less.

5.4.2 Multiplier Structure

The multiplier portion of a PM tube is based on the phenomenon of sec-
ondary electron emission. Electrons from the photocathode are accelerated
and caused to strike the surface of an electrode, called a dynode. If the
dynode material is properly chosen, the energy deposited by the incident
electron can result in the reemission of more than one electron from the
same surface. The process of secondary electron emission is similar to that
of photoemission discussed in the previous section. In this case, however,
electrons within the dynode material are excited by the passage of the en-
ergetic electron originally incident on the surface rather than by an optical
photon.

Electrons leaving the photocathode have a kinetic energy on the order of
1 eV or less. Therefore, if the first dynode is held at a positive potential
of several hundred volts, the kinetic energy of electrons on arrival at the
dynode is determined almost entirely by the magnitude of the accelerating
voltage. The creation of an excited electron within the dynode material re-
quires an energy at least equal to the bandgap, which typically may be of
the order of 2− 3 eV. Therefore, it is theoretically possible for one incident
electron to create on the order of 30 excited electrons per 100 V of accelerat-
ing voltage. Because the direction of motion of these electrons is essentially
random, many will not reach the surface before their de-excitation. Others
that do arrive at the surface will have lost sufficient energy so that they can-
not overcome the potential barrier at the surface and are therefore incapable
of escaping. Therefore, only a small fraction of the excited electrons ulti-
mately contribute to the secondary electron yield from the dynode surface.
To achieve electron gains on the order of 106 all PM tubes employ multiple
stages.

Because the time required for photoemission in the photocathode or sec-
ondary emission from dynodes is very short (0.1 ns or less), the time char-
acteristics of the PM tube are determined exclusively by the electron tra-
jectories. The electron transit time of a PM tube is defined as the average
time difference between the arrival of a photon at the photo-cathode and the
collection of the subsequent electron burst at the anode. In PM tubes of var-
ious designs, electron transit times range from 20− 80 ns. In most timing
applications, however, the transit time itself is not of primary importance
because if it were always a con- stant, it would introduce only a fixed delay
in the derived signal.Instead, the spread in transit time is a more important
quantity because it determines the time width of the pulse of electrons ar-
riving at the anode of the tube. The timing response of a typical PM tube is
illustrated in Figure 27a

The region between the photocathode and first dynode is critical in de-
termining the timing properties. To allow uniform collection over large
photocathodes, this distance is kept fairly large compared with interdynode
distances (see Figure 27b). The difference in paths between a photoelectron
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(a) The response of a PM tube to a short
pulse of light on the photocathode.

(b) Electrons accelerated from the
photocathode to the first dyn-
ode in a PM tube.

Figure 27: Pulse timing properties.

leaving the center of the photocathode and one at the edge is often a domi-
nant factor in the observed spread in transit time. The photocathode is often
curved to minimize the transit time spread across its diameter.

5.5 Experiment

As mentioned in the multiplier structure, the dynodes magnify the pulse
of electrons, allowing them to be detected. The signal is pre-amplified and
later amplified before it enters a multi channel analyzer (MCA). The ana-
lyzer separates different energies into different channels. In order to corre-
late the various channels to the actual energies, a sample emitting a known
energy must also be used. It is known that Cesium-137 radiates at 0.662
MeV, so after locating the peak of the spectrum, this information has to be
used to calibrate the MCA.

After calibrating the MCA, keep the Cesium-137 sample placed as closely 
as possible in front of the detector and measure the count rate for different 
intervals. Next, measure the absorption parameters of a 0.250-inch polyethy-
lene filter and 0.032 and 0.062- inch lead filters. Place an Indium-115 sample 
in front of the detector and measured the counts at approximately 417 keV. 
This is a freshly activated sample. Measure the decay rate of this energy 
state.

5.5.1 Tasks:

• Make yourself familiar with the software to acquire spectra

• Measure the background signal without any radioactive source

• Measure the spectra of the radioactive sources, determine the counts
per second, their statistical distribution (repeat one experiment several
times), and determine the FWHM of a peak

• Measure the absorption parameters for two different filters
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• Ask Raj for the neutron-activated In sample

• Measure the lifetime of the radioactive isotope (it’s about 1 hour, so
think about the way to measure this before you execute this experi-
ment)

5.5.2 Preparation key words

Types of radiation and its detection, NaI detectors, photomultipliers (how
do they work?), gamma-ray emission, Compton effect, lifetime of isotopes
and its measurement, stability of isotopes and types of nuclear decay, radia-
tion protection for different types of radiation.
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6 optical spectroscopy
The interaction between electromagnetic waves and matter can reveal prop-
erties of both EM waves and matter. Spectroscopy is a general term for the
science that deals with the interactions of various types of radiation with
matter. Some of this interactions can be approximated with classical mod-
els and others are best described with quantum mechanics, although in this
manual we deal with quantum approximations as well. In this experiment
you are able to measure transmitted, absorbed, and/or scattered light from
certain liquids and/or foils and you will be able to identify gases by charac-
terization of their emission spectra.

In section 8.1, Classical Theory, we derive the basic classical formulas that
are essential for the understanding and execution of the part of the exper-
iment that deals with transmitted, absorbed, and/or scattered light from
certain liquids and/or foils. Subsection 8.1.1 presents a classical electromag-
netic derivation that briefly describes the behavior of electromagnetic waves
in matter. This section presents a relatively crude derivation of the com-
plex (frequency dependent) absorption coefficient and index of refraction. For
experimental purposes this section may be skipped. For students seeking a
deeper understanding of EM radiation and its interaction with matter, and
how such interactions relate to experimental measurements, this section can
be briefly studied. Subsection 8.1.2 presents one of the derivations of Beer’s
law. Alternate, more elaborate, derivations are commonly available. This
section is crucial for the understanding of this experiment.

6.1 Classical Theory

6.1.1 Absorption Coefficient and Index of Refraction

The material in this section is based on a discussion by Griffiths[1]. The
propagation of electromagnetic waves through matter is governed by three
properties of the material:

• Permittivity ε

• Permeability µ

• Conductivity σ

These properties depend to some extend on the frequency of the electro-
magnetic waves. Whenever the speed of a wave depends on its frequency,
the supporting medium is called dispersive.

Electrons in a nonconductor are bound to specific molecules. External
electromagnetic waves in a conductor disrupt the equilibrium of the system.
Practically any biding force can be approximated using Taylor expansion for
sufficiently small displacements from an equilibrium position x0, e.g.

U(x) = U(x0) + xU
′(x0) +

1

2
x2U ′′(x0) + · · ·

The first term is a constant and has no dynamic significance while the
second term vanishes given that U(x) has an extrema at xo.
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Letting U ′′(x0) = kspring and ω20 =
√
ks
m we can approximate the biding

force as

Fbinding = −kspringx = −mω20x

We can also approximate some sort of damping force by

Fdamping = −2mγ
dx

dt

where the factor of 2 is there only for convenience in our calculations. In
the presence of an electromagnetic wave of frequency ω, polarized in the x
direction, the electron is subject to a driving force

Fdriving = qE = qE0 cosωt

Putting all this into Newton’s second law gives

m
d2x

dt2
= Fbinding + Fdamping + Fdriving

or,

mẍ+ 2mγẋ+mω20x = qE0 cosωt

In the complex plane, the second order differential equation becomes

¨̃x+ 2γ ˙̃x+ω20x̃ =
qE0
m
e−iωt

Letting x̃(t) = x̃0e−iωt

−ω2x̃0e
−iωt − 2iγωx̃0e

−iωt +ω20x̃0e
−iωt =

qE0
m
e−iωt

therefore

x̃0 =
qE0/m

ω20 −ω
2 − 2iγω

In polar notation, x̃0 = |x̃0|e
iδ, then

|x̃0| =
qE0/m√

(ω20 −ω
2)2 + 4γ2ω2

tan δ =
2γω

ω20 −ω
2

and finally

x̃(t) =
α/m√

(ω20 −ω
2)2 + 4γ2ω2

e−i(ω−δ)t (25)

The dipole moment is the real part of

p̃(t) = qx̃(t) =
qE0/m√

(ω20 −ω
2)2 + 4γ2ω2

e−i(ωt−δ) (26)
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The nature of the imaginary component of Equation 26 means that p is
out of phase with E–lagging behind by an angle

δ = tan−1
( 2γω

ω20 −ω
2

)
which is very small when when ω � ω0 and rises to π when ω � ω0.

In general, differently situated electrons within a given molecule experi-
ence different natural frequencies and damping coefficients. Suppose that
there are fj electrons with a natural frequency ωj and damping γj in each
molecule. If there are N molecules per unit volume, the polarization P is
given by the real part of

P̃ =
Nq2

m

(∑
j

fj

ω2j −ω
2 − 2iγjω

)
Ẽ0 (27)

Now, given that P̃ = ε0χ̃eẼ, ε̃ = ε0(1+ χ̃e), and ε̃r = ε̃
ε0

= 1+ χ̃e we find
that the complex dilectric constant is given by

ε̃r = 1+
Nq2

mε0

∑
j

fj

ω2j −ω
2 − 2iγjω

(28)

Ordinary, the imaginary term is negligible; however, when ω is very close
to one fo the resonant frequencies (ωj) it plays an important role. In a
dispersive medium the wave equation for a given frequency reads

∂2E
∂x2

= ε̃µ0
∂2E
∂t2

and it admits plane wave solutions of the form

E(z, t) = E0ei(k̃z−ωt) (29)

with a complex wave number k̃ = ω
√
ε̃µ with real and imaginary parts

given by

k̃ = k+ iκ

which plugged into Equation 29 yield

E(z, t) = E0e−κzei(kz−ωt) (30)

which implies that the wave is attenuated as the damping absorbs energy.
Now, the intensity is proportional to E2 and hence to e−2κz, then, we define

α = 2κ (31)

as the absorption coefficient. Furthermore, the index of refraction is
given by

n =
ck

ω
(32)

Now, if we define the coefficient Aj by

Aj =
fj

(ω2j −ω
2)2 + 4γ2jω

2
(33)

we can re-write the complex wave number as
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Figure 28: Anomalous Dispersion

k̃ =
ω

c

√
ε̃r =

ω

c

√√√√1+ Nq2

mε0

∑
j

fj

ω2j −ω
2 − 2iγjω

=
ω

c

√√√√(1+ Nq2

mε0

∑
j

Aj(ω
2
j −ω

2)
)
+ 2i

Nq2

mε0

∑
j

Ajγjω

In general, the absorption coefficient is given by

α =
2ω

c
Re

[√√√√(1+ Nq2

mε0

∑
j

Aj(ω
2
j −ω

2)
)
+ 2i

Nq2

mε0

∑
j

Ajγjω

]
(34)

Figure 28 shows the plotted index of refraction and the absorption coeffi-
cient in the vicinity of one of the resonances. As seen, the index of refraction
rises gradually as the frequency increases. However, in the immediate neigh-
borhood of a resonance the index of refraction drops sharply. This behavior
is called anomalous dispersion and it coincides with regions of maximum
absorption .

6.1.2 Beer’s Law

The material in this section is based on a discussion by Skoog[1]. Consider
a block of absorbing material (this could be solid, liquid, or gas) which in
this case we take to be a solution (see Figure 29).

A beam of parallel radiation with intensity I0 in the x direction enters the
block from the left. After passing the length b of the block with nparticles
(these could be absorbing atoms, ions, or molecules), the intensity is re-
duced to I. Now, consider an infinitesimal volume of thickness dx and
cross-sectional area A. Within this volume there are dn absorbing particles.
Now, imagine that each particle has a capture cross-sectional area σ at which
photon capture occurs. That is, if a photon reaches this area absorbtion will
occur. The sum of all capture areas is designated dA, that is, dA = σdn; the
ratio of the total capture area to the total area, then, is dA/A. On a statisti-
cal average, this ratio represents the probability for the capture of photons
within each section. But if the intensity at a given section is I and dI is
the reduced intensity in that section, then the probability is also denoted by
−dI/I, with the negative sign indicating that I decreases. Then,
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b

dx

A
I0x Ix

Figure 29: Attenuation of radiation with initial intensity I0 by a solution c contain-
ing c moles per liter of absorbing solute and with a path length of b cm.
I < I0

−
dI

I
=
dA

A

=
σdn

A
integrating both sides

−

∫I
I0

dI

I
=

∫n
0

σdn

A

ln
I0
I

=
σn

A
converting to base 10 logarithms

log
I0
I

=
σn

2.303A
but the area of the section is given by A = V/b, therefore

log
I0
I

=
σb

2.303
n

V
(35)

Observe that n/V has units of concentration #particles
cm3

. This can be read-

ily changed to units of concentration c #moles
Liter using the conversion factor

1000cm3 = 1 L and Avogadro’s constant NA = 6.02·1023particles
mol , i.e.

c =
n

V

moles
L

=
n

V
����particles
��cm3

1000��cm3

1 L
mol

6.02 · 1023����particles
then, in units of moles/L, the concentration of the solution is given by

c =
1000

6.02 · 1023
n

V
mol/L (36)
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where n is the # of particles and V is the volume which contains the solu-

tion measured in cm3 (since the factor of 1000 converts such measurement

to liters). Conversely

n

V

particles
cm3

= c
��mol

�L
1 �L

1000 cm3
6.02 · 1023particles

��mol
feeding this onto equation 35 we get

log
I0
I

=
6.02 · 1023

1000 ∗ 2.303
σbc

Defining ε = 6.02·1023
1000∗2.303σ as the molar extinction coefficient we get

log
I0
I

= εbc

Define A as an experimental absorbance that closely approximates the

true absorbance and it’s obtained with the equation

A = log10
I0
I

Finally, the experimental absorbance, as opposed to the true absorbance,

such as the one given by Equation 34, is given by

A = εbc (37)

An experimental relationship between the absorption coefficient, as described
in subsection 8.1.1, and the molar extinction coefficient is given by

α = 2κ = 2
2π

λ
ε

6.2 Quantum Theory

The characteristic spectral lines in a spectrum are due to the quantum nature
of energy levels of an excited atom. When an atom gets excited the electron
jumps to the next energy level. If the electron returns to a lower energy level
the excess energy is released in the form of photons. These photons have a
certain wavelength associated with this change in energy.

λ =
hc

E1 − E2
(38)

Here λ is the wavelength, h and c are constants and the difference of E is
the change in energy. For atoms there are unique energy differences corre-
lated to the wavelength of light emitted. However, there is more than one
energy level for each atom and henceforth more than one wavelength being
emitted. This is where a prism or diffraction grating comes into separate
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Figure 30: Optical emission spectrum of Helium

Figure 31: Optical absorption spectrum of Helium

the light into its unique wavelengths and making spectrum analysis possi-
ble. The emitting material is defined by its unique spectral lines. In Figure
30 the spectrum of helium below is shown. Each of the spectral lines coin-
cide with excited energy level of the helium atom.

This is analogous to absorption lines. If you have a source light that emits
a continuous spectra with an elemental gas in between you and the source,
the gas will absorb any light that excites the atoms within that gas. Because
the photon that gets emitted does not necessarily go in the direction of the
observation you are left with empty sections of the spectrum shown in the
figure below.

6.3 Experiment

A sample experiment with instructions and results is given. The sample pro-
vides a hands-on familiarization with the equipment and it allows students
a direct application of the discussed theory.

6.3.1 Introduction: Gold Colloids

Suppose that we have a batch of a gold colloid with a particle concentration
n/V of 7.00 · 1011 particles/mL and a particle size of 20 nm. Because the
conversion factor 1000mL = 1 L is equivalent to 1000 cm3 = 1 L, Equation
36 is still valid and this implies a concentration of c = 1.2 · 10−9mol/L, or
c=1.2 · 10−9M with M = mol/L. Assuming a path length of b = 1.0 cm we
find that

A = 1.2 · 10−9 ε (M cm) (39)

We want to find the extinction coefficient ε at the wavelength of maximum
of absorbance. Then:

• Turn on the light source. Open the software system.

• Place an empty sample block (with a path length b of 1 cm) on the
device (Figure 33i). Ensure the smooth/clear side faces the light.

• Cover the device and shift the cover all the way to the left (Figure 33a)
such that the intensity drops to zero.

• Store the dark reference on the computer (Figure 32a).

• Shift the cover all the way to the right (Figure 33b). Adjust the source
or the integration time to obtain an intensity of about (but not above)
4000. Store the reference (Figure 32b).
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(a) Store dark. (b) Store reference.

(c) Absorbance mode for sample. (d) Store data.

Figure 32: Software instructions.

• Place the sample on the device (Figure 33c) and place the cover on it.
Switch the system to absorbance mode (Figure 32c).

• Store the data (Figure 32d).

• Open excel and paste the data. Label the first column as the wave-
length and the second column as the absorbance.

• Using a graphing software (preferrably Origin, MATLAB, or Mathe-
matica, although exel is acepptable), solve for the extinction coefficient
ε using Equation 39.

• Graph ε as a function of wavelength (Figure ??).

• From the plot, The extinction coefficient for the peak wavelength 523nm
is approximately 1.2 · 109M−cm−.

6.3.2 Tasks

An Ocean Optics spectrometer is available for the experiment. You can use
a Tungsten halogen lamp for transmission and scattering.experiments with
the CUV sample holder.

• Measure the emission spectra of the different lamps available.

• Measure the characteristic maxima of the room lights.

• Measure the transmission through several foils and through selected
liquids with the sample holder.

• Measure the scattered signal from liquids with the sample holder.
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(i) Empty sample. (a) Dark. (b) Reference. (c) Sample.
Figure 33: Experimental set up

Figure 34: Extinction coeffcient of 20 nm gold colloid

6.3.3 Preparation key words

Lasers, characteristic emission lines from gasses, absorption, diffraction, in-
terference, coherence, diffraction grating, calculation of interference maxima
and minima for gratings and for a single slit, prism spectrometer, dispersion,
refractive index.
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7 electron spin resonance

7.1 Introduction to Quantum Mechanics

The general Shrodinger equation is given by
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i h
∂Ψ

∂t
= −

 h2

2m
∇2Ψ+ VΨ = HΨ

where H is the Hamiltonian:

H = −
 h2

2m
∇2 + V

In general, we want to solve this partial differential equation to obtain Ψ.
For example, the standard Hamiltonian for an electron is given by

H = −
 h2

2µ

( ∂2
∂r2

+
2

r

∂

∂r
−

L2

 h2r2

)
−

Ze2

4πε0r

The function Ψ that satisfies this differential equation i h∂Ψ∂t Ψ = HΨ also
determines the orbitals of the electron around the nucleus, the possible en-
ergy states, and in general anything that can be physically measured. How-
ever, the above Hamiltonian may change in the presence of a magnetic field.
As a first-order approximation, one may just simply account the added po-
tential U by letting H = U and solving the differential equation as if only
the potential U was present.

7.1.1 The Wave Function and Quantum Numbers

A quantum mechanical system is fully described by its wave function Ψ. For
an electron, its wave function may be dependent on the quantum numbers
n, l, j,ml,ms,mj, i.e. Ψ = Ψnljmlmsmj . In Dirac notation, the wave function
can be conveniently expressed as |Ψ >= |nljmlmsmj >Wave functions are
normalized such that their inner produc satisfies the relation

〈
Ψ||Ψ

〉
= 1

When we say that the system is fully described by the wave function, we
mean that the wave function contains all the necessary information that can
be verified through experiments. Such information include angular momen-
tum L, spin angular momentum S, and total angular momentum J among
others. These are related to (or rather quantized by) the quantum numbers
through the relations

L2 =  hl(l+ 1)

S2 =  hs(s+ 1)

J2 =  hj(j+ 1)

Also, note that the total angular momentum J is given by

J = L + S

or

L = J − S

therefore
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L2 = J2 + S2 − 2S · J
=  hj(j+ 1) +  hs(s+ 1) − 2S · J

Consequently

S · J = 1

2

(
 hj(j+ 1) +  hs(s+ 1) −  hl(l+ 1)

)
(40)

The quantum numbers have the following properties:

Principal n −→ 1 6 n

Azimuthal l −→ 0 6 l 6 n− 1

Spin s

Total angular momentum j −→ j = |l± s|
Magnetic ml −→ −l 6 ml 6 l

Spin projection ms −→ −s 6 ms 6 s

Total angular momentum projection mj −→ mj = ml +ms

Most particles that we experience in everyday life have spin s = 1/2.
These particles are electrons, protons, neutrons, neutrinos, and muons.

7.1.2 Operators

In linear algebra terms, an operator is a matrix that obeys the eigenvalue
equation

A~x = λA~x

where we say that λA is an eigenvalue of the matrix A. In quantum
mehcanics, physical observables orrespond to such eigenvalues. That is,
an operator acts on the wave function to obtain physically allowed values
that correspond to such operator.

Example 7.1. Momentum

The momentum operator is given by p̂ = −i h ∂∂x . Suppose that the wave
function is given by |Ψ >= ei(kx−ωt). Then

p̂|Ψ > = −i h
∂

∂x
ei(kx−ωt)

= −i h(ik)ei(kx−ωt)

=  hkei(kx−ωt)

therefore

p̂|Ψ > =  hk|Ψ >

which obeys the De Broglie relation p =  hk. Some typical operators and

eigenvalues are:
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L̂|Ψ > =  hl|Ψ >

L̂
2
|Ψ > =  h2l(l+ 1)|Ψ >

L̂z|Ψ > =  hml|Ψ >

Ŝ|Ψ > =  hs|Ψ >

Ŝ
2
|Ψ > =  h2s(s+ 1)|Ψ >

Ŝz|Ψ > =  hms|Ψ >

7.1.3 Expectation Values

The expectation value of an operator O is given by

< O >=< Ψ|O|Ψ >

where < Ψ| is the complex conjugate of |Ψ >.

Example 7.2. Kinetic Energy

The kinetic energy operator is given by K̂ = p̂2

2m = 1
2m (−i h ∂∂x )(−i

 h ∂∂x ) =

−
 h2

2m
∂2

∂x2
. Suppose that the wave function is given by |Ψ >= ei(kx−ωt). If

we were to measure the kinetic energy of identical systems, we refer to the
average value of such measurements as the expectation value, i.e.

K̂|Ψ > = −
 h2

2m

∂2

∂x2
ei(kx−ωt)

=
 h2k2

2m
ei(kx−ωt)

therefore

< Ψ|K̂|Ψ > = e−i(kx−ωt)
 h2k2

2m
ei(kx−ωt)

=
 h2k2

2m
thus

< K̂ > =
 h2k2

2m

7.2 Dipole Moments

Figure shows a primitive model of an electron in an atom. We picture the
electron (mass m, charge −e as moving in a circular orbit with radius r and
speed v. This moving charge is equivalent to a current loop. Recall that the
magnetic dipole moment is given by µ = IA; where I is the current of the
loop and A is the area of the loop.

To find the current associated with the electron, we note that the orbital
period T (the time for the electron to complete one orbit) is the orbit circun-
ference divided by the electron speed: T = 2πr/v. The equivalent current I
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is the total charge passing any point on the orbit per unit time, which is just
the value e of the electron charge divided by the orbital period T:

I = −
e

T
= −

ev

2πr
The magnetic moment µ = IA is then

µ = −
ev

2πr
πr2

= −
evr

2
=
emvr

2m

= −
e

2m
L

Experimentally, the electron’s spin property behaves similar to that of

angular momentum. Then we may express the magnetic dipole moment

associated with spin as

µ = −
e

m
L

where the extra factor of two was explained by Dirac in his relativistic

theory of the electron

.

In gneral, we may then define the following:

µl = −
e

2m
L (41)

µs = −
e

m
S (42)

7.3 The Zeeman Effect

7.3.1 Theory

Recall that there is an associated potential energy for a magnetic dipole in
the presence of a magnetic field: U = −µ · B. In an atom, this is an extra
potential energy in addition to the standard Coloumb potential. We may
say that if the electron was previously in equilibrium, then the presence of
an electric field causes a perturbation.

When an atom is placed in a uniform external magnetic field B, the energy
levels are shifted. This phenomenon is known as the Zeeman effect. For a
single electron the perturbation is

HZ = −(µl + µs) ·B

=
e

2m
(L + 2S) ·B

There is an internal magnetic field in the atom. The nature of the Zeeman
splitting depends critically on the strength of the external field in compar-
ison to the internal field that gives rise to spin-orpit coupling. Here we
consider the cases where Bext << Bint.
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The Zeeman correction to the energy is given by the expectation value

EZ =< Ψ|Hz|Ψ >

=
e

2m

〈
L + 2S

〉
·B

Observe that

J = L + S = L + 2S − S

J + S = L + 2S

therefore

EZ =
e

2m

〈
J + S

〉
·B

The problem here is that in the presence of a magnetic field (or spin-orbit
coupling), L and S are not separately conserved, meaning that their expec-
tation values are time dependent. However, the total angular momentum
J = L + S is constant (see Figure); L and S precess rapidly about this fixed
vector. In particular, the (time) average value of S is just its projection along
J:

Savg =
(S · J)
J2

J

but S · J is given by Equation 40, therefore

〈
J + S

〉
=
〈
J + S

〉
=
〈
J +

(S · J)
J2

J
〉

=
〈(
1+

(S · J)
J2

)
J
〉

=
〈(
1+

1
2

(
 hj(j+ 1) +  hs(s+ 1) −  hl(l+ 1)

)
 hj(j+ 1)

)
J
〉

=
(
1+

1
2

(
 hj(j+ 1) +  hs(s+ 1) −  hl(l+ 1)

)
 hj(j+ 1)

)〈
J
〉

we may now define the following

Definition 7.1. Lande g-factor gJ

g = 1+

(
j(j+ 1) − l(l+ 1) + s(s+ 1)

)
2j(j+ 1)

for an electron with s=1/2

gJ = 1+

(
j(j+ 1) − l(l+ 1) + 3

4

)
2j(j+ 1)
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Then,

〈
J + S

〉
= gJ

〈
J
〉

Suppose that we place the external magnetic field in the z direction so

that only J = Jz makes any contribution, then

〈
J + S

〉
= gJ

〈
Lz
〉

= gJ
〈
Ψ|Lz|Ψ

〉
= gJ hmj

〈
Ψ||Ψ

〉
= gJ hmj

Consequently

EZ =
e h

2m
gJmjBz

and using the Bohr magneton µB = e h
2m we get

EZ = µBgJmjBz (43)

7.3.2 Free Radicals

Recall that j = |l± s| and mj = ml +ms. For most organic radicals and
radical ions, unpaired electrons have L close to zero and the total electron
angular momentum quantum number J is pretty much the spin quantum
number, S. This implies j ≈ s and mj ≈ ms. Then

g ≈ 1+ s(s+ s) + s(s+ 1)

2s(s+ 1)

≈ 1+ 1+ 1

2

≈ 2
and

EZ ≈ gµBmsBz (44)

where ms = ±1/2
.

Some electrons will align parallel and others will anti-parallel to the mag-
netic field. This is the essense of the ms = ±1/2 quantum number. Parallel
and anti-parallel electrons have an energy difference of ∆E = E+−E−. Then

∆E = gµBBz (45)

The situation becomes much more complicated with transition metals.
Not only they have large L ′s and S ′s, but these values depend on the sur-
rounding electric fields of ligands, making everything messier but also more
interesting. If the molecule contains nuclei with magnetic moments, such
as protons, their interaction with external field and the electronic magnetic
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moment will change stationary energies EZ.

The nuclear angular momentum quantum number I determines the nu-
clear magnetic moment the same way as for the electron:

EZ = µNgNmiBz

where µN is now the nuclear Bohr magneton µN = e h
2mp

which is a much

smaller values because of the ≈ 2000 times more heavy proton mass mp.

7.4 Magnetic Resoance

There are basically two types of magnetic resonance experiments: nuclear
magnetic resonance (NMR) and electron paramagnetic resonance (EPR), the
latter sometimes called electron spin resonance (ESR). The experiments are
basically the same, except that the Bohr magneton µB = e h/2me and the
nuclear magneton µN = e h/2mp differ by a factor of about 1,800 due to the
mass differences between the electron and the proton. In the experiment,
one applies a constant magnetic induction B0 in some fixed direction (which
we shall call the z direction), and then an oscillatory, circularly polarized
magnetic induction of strength B1 in the xy plane (perpendicular to the
direction of the static field). Thus, the Hamiltonian is

H = −µs ·B0 − µs ·B1
= γB0Sz − γB1[Sx cosωt+ Sy sinωt]

where γ = gµB or gµN for EPR nd NMR experiments, respectively. For

simplicity we write

γB0 = ωL

γB1 = ω1

where ωL is the Larmor frequency, and ω1 is the effective frequency due
to the amplitude of the applied oscillatory field. This is different from the
actual angular frequency ω of the applied oscillatory field essential to flip
the spins. Note that B0 and B1 are kept constant in the experiment, but
the angular frequency ω of the oscillatory field is varied until resonance is
found.

We neglect the orbital motion of the electron or proton and write the spin
state (this is the wave function which neglets everything except spin)

X(t) =

(
a(t)

b(t)

)
and the Schrodinger wave equation for the spin 1/2 particle may then be

written as
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HX(t) = i h
∂X(t)

∂t

i h

(
ȧ

ḃ

)
=

 h

2

(
ωL ω1e

−iωt

ω1 −ωL

)
which leads to the two coupled differential equations

iȧ =
1

2
ωLa+

(1
2
ω1e

−iωt
)
b

iḃ = −
1

2
ωLb+

(1
2
ω1e

iωt
)
a

Now in the absence of the oscillatory field (ω1 = 0), we would have

iȧ0(t) =
1

2
ωLa0(t)

iḃ0(t) = −
1

2
ωLb0(t)

where the subscript 0 just means that ω1 = 0, but a0(t) and b0(t) are

functions of t due to Larmor precession. Those solutions are

a0(t) = a0(0)e
−iωLt/2

b0(t) = b0(0)e
+iωLt/2

we therefore write

a(t) = A(t)e−iωLt/2

b(t) = B(t)e−iωLt/2

where A(t) and B(t) contain the extra t-dependence not in the Larmor

precession. We expect that the oscillatory time dependence of A(t) and

B(t) will be weak near “resonance”, although we don’t yet know where the

resonance will occur. Thus

iȧ = iȦe−iωLt/2 +
1

2
ωLAe

−iωLt/2

=
1

2
ωLAe

−iωLt/2 +
1

2
ω1Be

i(ωL/2−ω)t

iȦe−iωLt/2 =
1

2
ω1Be

i(ωL/2−ω)t

iḃ = iḂeiωLt/2 −
1

2
ω1Ae

i(ωL/2−ω)t

= −
1

2
ωLBe

iωLt/2 +
1

2
Aei(ωL/2−ω)t

iḂeiωLt/2 =
1

2
ωLAe

i(ωL/2−ω)t

taking the derivative we have
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iÄe−iωLt/2 +
1

2
ȦωLe

−iωLt/2 =
1

2
ω1Ḃe

i(ωL/2−ω)t

+
1

2
ω1[(ωL/2−ω)]Ai(ωL/2−ω)t

iÄe−iωLt/2 +
1

2
ȦωLe

−iωLt/2 =
1

2
e−iωt

ω1
2i
Aei(ωL/2−ω)t

+
1

2

i(ωL/2−ω)
ω1
2

iȦe−iωLt/2

iÄe−iωLt/2 +
1

2
ȦωLe

−iωLt/2 = −i(
ω1
2

)2Ae−iωLt/2 − (
ωL
2

−ω)Ȧe−iωLt/2

We note that the e−iωLt/2 factors appear in every term, and can be di-

vided out. Simplifying, we obtain

Ä− i(ωL −ω)Ȧ+ (ω1/2)
2A = 0

Thus, we may solve this second order ordinary differential equation by

assuming an exponential type of solution,

A(t) = A(0)eiΩt

−Ω2A(0)eiΩt − i(ωL −ω)eiΩt(ω1/2)
2A(0)eiΩt = 0

−ω2 + (ωL −ω)Ω+ (ω1/2)
2 = 0

which is easily solved to yield the two solutions,

1

2

[
ωL −ω±

√
(ω−ωL)2 +ω

2
1] = Ω±

The two solutions of the second-order differential equation may then gen-

erally be written as

A+e
iΩ±t +A

iΩ−t
e = A(t)

where A± are as yet unspecified constants. Then

iȦe−iωLt/2 =
1

2
ω1e

i(ωL/2−ω)t

B(t) = −
2

ω1

(
A+Ω+e

−iΩt +A−Ω−e
−iΩ+t

)
= −

2

ω1

(
A+Ω+e

−iΩ−t +A−Ω−e
−iΩ+t

)
Now, let us assume that at t = 0, the system is in a spin up state. Then

a(0) = A(0) = 1 and b(0) = B(0) = 0, or
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A+ +A− = 1

A+Ω+ +A−Ω− = 0

A+Ω+(1−A+)Ω− = 0

A+ = −
Ω−

Ω+ −Ω−
,

A− = 1−A+ =
Ω+

Ω+ −Ω−
,

Now, the probability that at time t the spin has flipped to the down state

is

P(ω, t) = |b(t)|2 = |B(t)|2 =
4

ω21

∣∣∣A+Ω+e
−iΩ−t +A−Ω−e

−iΩ+t
∣∣∣2

=
4

ω21

∣∣∣− Ω−Ω+

Ω+ −Ω−
e−iΩ−t +

Ω+Ω−

Ω+ −Ω−
e−iΩ+t

∣∣∣2
=

4

ω21

( Ω+Ω−

Ω+ −Ω−

)2
(e−iΩ−t − e−iΩ+t)

=
8

ω21

( Ω+Ω−

Ω+ −Ω−

)2(
1− cos[(Ω+ −Ω−)t]

)
=

8

ω21

( 1
4 [(ωL −ω)2 − (ωL −ω)2 −ω21]√

(ωL −ω)2 +ω21

×
(
1− cos[t

√
(ωL −ω)2 +ω21]

)
=
8ω21
16ω21

1

(ωL −ω)2 +ω21

(
1− cos[t

√
(ωL −ω)2 +ω21]

)
=
1

2
ω21

1

(ωL −ω)2 +ω21

(
1− cos[t

√
(ωL −ω)2 +ω21]

)
The maximum probability of flipping a spin is at resonance, when ω =

ωL Then, the probability of flipping a spin becomes

P(ω, t) =
1

2
[1− cosω1t]

The linewidth (full width at half maximum) is given by ω1, the strength of
the oscillatory field. The frequency dependence of the lineshape, given by
the time average of the probability of flipping the spin is

〈
P(ω, t)

〉
t
=
ω21
2

1

(ωL −ω)2 +ω21
(46)

is Lorenztian. This is the basis for all NMR uses in chemistry and solid state
physics, and for MRI (magnetic resonance imaging) detectors in medical
anal- ysis. In that case, one has to have a spatially non-uniform magnetic
field, in order to detect the local positions of the flipped spins.

In experiments, the derivative of Equation 46 can usually be inferred by
changes in the alternating magenetic field. That is, one is usually able to
measure

∂
〈
P(ω, t)

〉
t

∂ω
=

ω21 +ωL −ω

(ω21 + (ωL −ω)2)2
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Figure 35 (left) shows the probability and its derivative that the spin will
flip. Experimentally, If the system is constantly sweep the resulting plot is
shown below (right).

〈
P(ω, t)

〉

∂
〈
P(ω,t)

〉
∂ω

−
∣∣∣∂〈P(ω,t)

〉
∂ω

∣∣∣

−
〈
P(ω, t)

〉
Figure 35: Probability and its derivative that the spin will flip

7.5 Experiment

The energy levels on an electron in a magnetic field split. We refer to this
split as the Zeeman effect. When the angular momentum is negligible, such
as in the case with radicals, the energy difference between the two split lev-
els is given by:

∆E = gµBBz

= g
e h

2m
Bz

To test this theory, we place a constant magnetic field in the z direction
and an alternating field in the xy plane perperdicular to the constant field.
With this new field, the probability that an electron will absorb the radiation
energy and flip its state is given by:

〈
P(ω, t)

〉
t
=
ω21
2

1

(ωL −ω)2 +ω21

When energy is absorbed, ∆E = ω h, therefore ω = gµBBz
 h , or

ω =
ge

2m
Bz

Make yourself familiar with the setup of the equipment, how to control
field, field modulation, and frequency, as well as monitoring the two latter
signals on the oscilloscope. Select the largest high-frequency coil and insert
one of the two samples with metal ions.

Select a high frequency, and scan through the available range of the mag-
netic field.
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Calculate the field near the sample, and check this value with the Hall
probe.

Find a field range where the ESR signal appears and lower the field modu-
lation amplitude to identify the magnitude of the field. Determine the Bohr
magneton.

Repeat the procedure for both samples at different frequencies.

7.5.1 Preparation key words

Principles of ESR and NMR, electrons in magnetic fields, Pauli principle,
energy levels of electrons in a magnetic field, Zeeman effect, Quantum me-
chanical hydrogen model
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