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Chapter 9     
Rotational Dynamics
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Goals for Chapter 9

• To study torque.
• To study how torques add a new variable to 

equilibrium.

• To relate angular acceleration and torque.
• To examine rotational work and include time to 

study rotational power.

• To understand angular momentum.
• To examine the implications of angular 

momentum conservation.

afs  p53f09  L20

• Consider force required to open 
door. Is it easier to open the 
door by pushing/pulling away
from hinge or close to hinge?

close to hinge

away from 
hinge

Farther from 
from hinge, 
larger 
rotational 
effect!

Physics concept: torque

Force and Torque

afs  p53f09  L20

According to Newton’s second law, a net force causes an
object to have an acceleration.

TORQUE

Action of Forces and Torques on Rigid Objects

What causes an object to have an angular acceleration?

The amount of torque depends 
on 
where and in what direction the 
force is applied, 
as well as the location of the 
axis of rotation.

afs  p53f09  L20

 is the torque

– d is the lever arm (or moment arm)

– F is the force

Fd
Door example:

Torque

• Torque, , is the tendency of a force to 
rotate an object about certain axis

• Torque () is defined as the force applied 
multiplied by the lever (moment) arm.
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• It is not necessarily
the distance between 
the axis of rotation 
and point where the 
force is applied

Lever Arm

• The lever arm, d, is the shortest (perpendicular)
distance from the axis of rotation to the ‘line of 
action’ drawn along the the direction of the force

 sinLd

lever 
arm
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DEFINITION 
OF TORQUE F

Torque and Lever Arm

Magnitude of Torque = (Magnitude 
of the force) x (Lever arm)

Units of Torque

Foot pound (ft lb)US Customary
Newton meter (Nm)SI
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• Torque is a vector quantity

Direction of Torque

• The direction is perpendicular
to the plane determined by the 
lever arm and the force

• Direction and sign: 

 If the turning tendency of 
the force is 
counterclockwise, the 
torque will be positive

 If the turning tendency is 
clockwise, the torque will 
be negative

We work with its magnitude
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Vector multiplication

1. Vector dot product

࡯ ൌ ࡭ ∙ ࡮ ൌ ࡭ ∙ ࡮ ∙ ࣂ࢙࢕ࢉ

2. Vector cross product

࡯ ൌ ࡭ ൈ ࡮ ൌ ࡭ ∙ ࡮ ∙ ෡࢑ࣂ࢔࢏࢙

෡࢑ is a unit vector, ࢑෡ ٣ ࡭ and ࢑෡ ٣ ࡮
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 sinFL
F is the force

L is the distance along the object

Φ is the angle between force and object

L

An Alternative Look at Torque

• The force could also be 
resolved into its x- and y-
components
– The x-component,   F cos Φ, 

produces  0 torque

– The y-component,   F sin Φ, 
produces a non-zero torque
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• To loosen a stuck nut, a man pulls at an angle of 45o

on the end of a 50 cm wrench with a force of 200 N. 

What is the magnitude of the torque on the nut?

r = 0.5 m

F = 200 N
45o

Example:  Torque

= 70.7 Nm

 = (200 N) (0.5 m) sin45o

 sinrF
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The tendon exerts a force of magnitude 790 N.  
Determine the torque (magnitude and direction) 
of this force about the ankle joint, which is 
located 3.6 cm away from the joint.

Example:  The Achilles Tendon

790 N

F

m106.3
55cos

2




    35sinm106.3N 720 2
mN 15 

35o

m106.3
35sin

2




Clockwise,   < 0
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If a rigid body is in equilibrium, neither its linear motion 
nor its rotational motion changes.

0 yx aa

0

9.2 Rigid Objects in Equilibrium

0

0 and 0x y

F

F F

 
   



– This is a necessary, but not sufficient, condition 
to ensure that an object is in complete mechanical 
equilibrium
–This is a statement of translational equilibrium

0
• The net external torque must be zero
• This is a statement of rotational equilibrium

The net external force must be zero

no 
acceleration !

no angular acceleration !
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Reasoning Strategy
1. Select the object to which the equations for equilibrium are to 

be applied.

2. Draw a free-body diagram that shows all of the external 
forces acting on the object.

3. Choose a convenient set of x, y axes and resolve all forces into 
components that lie along these axes.

4. Apply the equations that specify the balance of forces at 
equilibrium.  (Set the  net force in the x and y directions equal 
to zero.)

5. Select a convenient axis of rotation.  Set the sum of the 
torques about this axis equal to zero

6. Solve the equations for the desired unknown quantities.

Rigid Objects in Equilibrium
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A woman whose weight is 530 N is 
poised at the right end of a diving board
with length 3.90 m.  The board has
negligible weight and is supported by
a fulcrum 1.40 m away from the left
end. Find the forces that the bolt and the 
fulcrum exert on the board.

Example:  A Diving Board

0WF W22  

   
m 1.40

m 90.3N 530
F2 

2

W
2

W
F






0

N 1480
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021  WFFFy

0N 530N 14801  F

N 9501 F

N 1480F2 
from torque 
equation

  0Fy

0Fx  Here: no 
forces in x 
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Example:  Biceps torque
The biceps muscle exerts a vertical force on the lower arm. Two lower arm 
positions are shown corresponding to different angles relative to the horizontal. 
For each case, calculate the torque about the axis of rotation through the elbow 
joint, assuming the muscle is attached 5 cm from the elbow.

a) b)

Note: The attachment point of the biceps 
muscle to the forearm is much further away 
from the elbow in chimps than in humans.

Nm

NmFr

35

70005.0


 

Nm

Nm

mr

30

)700(60sin05.0

60sin05.0






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The arm is horizontal and weighs 31.0 N.  The deltoid muscle can 
supply 1840 N of force.  Distances are indicated in the figure. 
What is the weight of the heaviest dumbell he can hold?

Example:  Bodybuilding

  0Fy

0Fx 

0
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013cosMSF o
xx 

o
x 13cosMS 

 yF

At this point two unknowns:  Sy and  Wd

N1790o13cosN1840

da
o

y WWMS  13sin 0
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

   0.13sinm 150.0M 

d

Maa
d

MW
W



 


0

N 1.86
     

m620.0

0.13sinm 150.0N 1840m 280.0N 0.31 


0.150m

Mddaa MWW   0
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0WW13sinMS da
o

y 

Back to second force equ.Wd = 86.1 N

Sx = 1790 N

Wa = 31.0 N

N1.86N0.3113sinN1840S o
y 

M = 1840 N

N297Sy 

Suppose that you placed a 10 m ladder (which weights 100 N) 
against the wall at the angle of 30°. What are the forces acting on 
it and when would it be in equilibrium?

Example: Equilibrium of a ladder

Given:

weights: w1= 100 N
length: l = 10 m
angle: = 30°
 = 0

Find: 

f =  ?
n  =  ?
P  =  ?

P

w

f

n 
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1. Draw all applicable forces

N6.86P 

Torques:

Nmgn

mgnFy

100

0





2. Choose axis of rotation at 
bottom corner ( of f and n
are 0!)

Note: f = s n, so 

866.0
100

6.86


N

N

n

f
s

Forces:

Pf

PfFx



 0

0)120sin()120sin(
2

  PL
L

mg

2

1
1866.0

2

1
1000  PN

x

y

30o

120o

120°
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9.3 Center of Gravity

The center of gravity of a 
rigid body is the point at 
which its weight can be 
considered to act when the 
torque due to the weight is 
being calculated.

When an object has a symmetrical shape 
and its weight is distributed uniformly, the 
center of gravity (center of mass) lies at its 
geometrical center.

 Center of Mass

When L << RE
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







21

2211
cg WW

xWxW
x

Center of Gravity
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• The center of mass is at the point where the system 
balances!

• Sum of all gravitational torques about an axis through 
the center of gravity (mass) = 0!

m1
m2

d1 d2 0dmdm 2211 

d

d

m

m
1

2

2

1



+
CM

Center of Gravity (Mass) & Statics
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The horizontal arm is com-
posed of three parts: the upper 
arm (17 N), the lower arm (11 
N), and the hand (4.2 N). Find 
the center of gravity of the arm 
relative to the shoulder joint.

Example 6:  Center of Gravity of an Arm









21

2211
cg WW

xWxW
x

        
N 2.4N 11N 17

m 61.0N 2.4m 38.0N 11m 13.0N 17
xcg 




m 28.0
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TT maF 

 raT

rFT

  2mr Moment of Inertia, I

9.4 Newton’s Second Law for Rotational Motion 

ram T
rrm 
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 
 

 




2
NNN

2
222

2
111

rm

rm

rm

    2
iii

rm
Net external
torque Moment of 

inertia

Newton’s Second Law for Rotational Motion (fixed axis) 

Rigid Body:  Large number of ‘fixed’ particles

Angular 
acceleration
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FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS



















onaccelerati

Angular 

inertia

 ofMoment 
   torqueexternalNet 

 I

  2
iirmI

Requirement: Angular acceleration
must be expressed in radians/s2.

Rotational Analog of Newton’s Second Law
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Two particles each have mass and are fixed at the ends of a thin 
rigid rod.  The length of the rod is L. Find the moment of inertia 
when this object rotates relative to an axis that is perpendicular to 
the rod at  (a) one end and (b) the center.

Example 9: Moment of Inertia - Depending on Where Axis Is

(a) (b)
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(a)      222
22

2
11

2 Lm0mrmrmmrI 

Lr0r 21 
mmm 21 

2mLI 

(b)
     222

22
2

11
2 2Lm2LmrmrmmrI 

2Lr2Lr 21 

mmm 21 

2
2
1 mLI 
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• For multiple objects, I clearly depends on 
the rotation axis!!

I = 2mL2 I = mL2 I = 2mL2

L

mm

mm

Calculating Moment of Inertia

For a rigid body, moment of inertia, I also depends on the 
rotational axis.
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• For a continuous solid object we have to add up the m r2

contribution for every infinitesimal mass element m.





N

1i

2
ii rmI

r

m

i
2
i mrI 

Calculating Moment of Inertia

will become an integral !

• For a discrete collection of point masses we found:
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Some Examples of Moment of Inertia for Solid Objects
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A 15 N force is applied to a cord wrapped around a pulley of mass  M = 4 kg  
and radius  R = 33 cm. The pulley is observed to accelerate uniformly from rest 
to reach an angular speed of  30 rad / s  in 3 s. Determine the moment of inertia 
of the pulley (rotates about center).

 INET


 NETI

2s
rad

10

Nm95.4 2mkg50.0

Example: A Heavy Pulley

Nm

NmRF

srad
t

net

net

95.4

1533.090sin

/10
3

030 2

















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The combined moment of inertia of the dual pulley is 50.0 kg·m2.  
The crate weighs 4420 N.  A tension of 2150 N is maintained in the 
cable attached to the motor.  Find the angular acceleration of the 
dual pulley.

Example 12: Hoisting a Crate

Crate

Pulley

Free body diagrams
Two objects
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 ITT 2211 y2y mamgTF 

equal

y2 mamgT 

Crate Pulley
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 2ya 

   ImamgT 2y11 

   ImmgT 2211 

      
  22

2

m 200.0kg 451mkg 46.0

m 200.0sm80.9kg 451m 600.0N 2150






y2 mamgT 

 ImmgT 2
2211 

2
2

211

mI

mgT










2srad3.6
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9.5 Rotational Work and Energy

Definition of Rotational Work

The rotational work WR done by a constant torque τ in turning an 
object through an angle θ is  

workLinearDFW

workRotationalW

T

R




Requirement: θ must be expressed in radians.
SI unit of Rotational Work: joule (J)
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    2
2
122

2
122

2
1 ImrmrKE  

22
2
12

T2
1 mrmvKE 

 rvT

9.5 Rotational Work and Energy

2
2
1

R IK 

DEFINITION OF ROTATIONAL KINETIC ENERGY

Requirement: The angular speed must be expressed in rad/s.

The rotational kinetic energy of a rigid rotating object is

SI Unit of Rotational Kinetic Energy:   joule (J)
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Analogy:  Linear and Rotational Motion

2v
2

m
K 

x

t

x
v






t

v
a






m

amF 

linear     Position angular

Velocity

Acceleration

Mass / Moment of Inertia

Kinetic Energy

Force / Torque



t




t




2

2

I
K 

 I


i

2
iiRmI
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Determine which cylinder 
has the greatest translational
speed upon reaching the 
bottom.

Example: Rolling Cylinders

mghImvE 2
2
12

2
1 

A thin-walled hollow cylinder (mass = mh, radius = rh) and a solid 
cylinder (mass = ms, radius = rs) start from rest at the top of an 
incline.
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i
2
i2

12
i2

1
f

2
f2

12
f2

1 mghImvmghImv 

i
2
f2

12
f2

1 mghImv 

ENERGY CONSERVATION

rvff 

i
22

f2
12

f2
1 mghrvImv 

2
o

f rIm

mgh2
v


 The cylinder with the smaller 

moment of inertia  I  will have a 
greater final translational speed.

ii,Ri,Tff,Rf,T UKKUKK 

afs  p53f09  L20

2
o

f rIm

mgh2
v




The cylinder with the smaller 
moment of inertia  I will have a 
greater final translational speed.

Hollow cylinder

Solid cylinder

2
H rmI 

2
S r

2

m
I 

22
o

H rrmm

mgh2
v


 ogh

22

o
S

rr
2
m

m

mgh2
v




ogh
3

4


faster
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9.6  Angular Momentum

DEFINITION OF ANGULAR MOMENTUM

Requirement: The angular speed must be expressed in rad/s.

The angular momentum L of a body rotating about a 
fixed axis is the product of the body’s moment of  inertia 
and its angular velocity with respect to that axis: 

SI Unit of Angular Momentum:    kg·m2/s

 IL
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Angular Momentum

• The gymnast or the diver change rotational 
velocities by changing body shape. IL
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Analogy:  Linear and Rotational Motion

2v
2

m
K 

x

t

x
v






t

v
a






m

amF 

vmp 

linear     Position angular

Velocity

Acceleration

Mass / Moment of Inertia

Kinetic Energy

Force / Torque

Momentum



t




t




2

2

I
K 

 I
 IL


i

2
iiRmI
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Torque and the rate of change of Angular Momentum

 I

t
I





t

L






If the axis doesn’t move within the rotating object, then I is 
constant. In this case

Analogue of Newton’s second 
law for rotational motion

t

L






Analogous to:
t

p
F






 I
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Prinicple of Conservation of Angular Momentum

t

L




 If  = 0,  then
t

L
0




 .constL 

The angular momentum of a system remains 
constant (is conserved) if the net external torque 
acting on the system is zero.

Linear momentum is conserved in absence of an 
applied force.

Angular momentum is conserved in absence of an 
applied torque.

(translational invariance of physical laws)

(rotational invariance of physical laws)

t

P
F









t

L









0F 


0

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A person sits on a piano stool holding a sizable mass in each hand. Initially,
he holds his arms outstretched and spins about the axis of the stool with an
angular speed of 3.74 rad/s. The moment of inertia in this case is 5.33 kg.m2.
While still spinning, the person pulls his arms in to his chest, reducing the
moment of inertia to 1.60 kg.m2. What is the person’s angular speed now?

s/rad5.12

s/rad74.3
m.kg60.1

m.kg33.5

f

2

2

f













i
f

i
f I

I










iiff II 
if LL 

Example: Conservation of Angular Momentum
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Another Example: Conservation of Angular Momentum
A 3.0-m-diameter merry-go-around with rotational inertia 120 kg m2

is spinning freely at 1.57 rad / s. Four 25-kg children sit suddenly on 
the edge of the merry-go-around. Find the new angular speed.

2
2

2
2

2
12

2
1

2211

345

)225120(

)5.1)(254(

120

.

mkgI

mkgI

mkgII

mkgI

IIconstL









 

./546.0

/57.1
345

120

2

2

2

1
2

1
2

srad

srad
mkg

mkg

I

I












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An artificial satellite is placed in an elliptical orbit about the 
earth.  Its point of closest approach is 8.37x106m
from the center of the earth, and its point of greatest distance is 
25.1x106m from the center of the earth.The speed of the satellite 
at the perigee is 8450 m/s.  Find the speed at the apogee.

Example:  A Satellite in an Elliptical Orbit
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Angular momentum of 
satellite in orbit is 
conserved
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angular momentum conservation
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Satellite does not have constant 
speed in an elliptical orbit.
Planets:  Kepler’s second law

Equal areas in equal time intervals


