

Goals for Chapter 9

- To study torque.
- To study how torques add a new variable to equilibrium.
- To relate angular acceleration and torque.
- To examine rotational work and include time to study rotational power.
- To understand angular momentum.
- To examine the implications of angular momentum conservation.

Rigid Objects in Equilibrium

Reasoning Strategy

- 1. Select the object to which the equations for equilibrium are to be applied.
- 2. Draw a free-body diagram that shows all of the external forces acting on the object.
- 3. Choose a convenient set of *x*, *y* axes and resolve all forces into components that lie along these axes.
- **4.** Apply the equations that specify the balance of forces at equilibrium. (Set the net force in the *x* and *y* directions equal to zero.)
- 5. Select a convenient axis of rotation. Set the sum of the torques about this axis equal to zero
- 6. Solve the equations for the desired unknown quantities.

Analogy: Linear and Rotational Motion			
x linea	r Position	angular	θ
$v = \frac{\Delta x}{\Delta t}$	Velocity		$\omega = \frac{\Delta \theta}{\Delta t}$
$a = \frac{\Delta v}{\Delta t}$	Acceleration		$\alpha = \frac{\Delta \omega}{\Delta t}$
F = m a	Force / Torqu	Je	$\tau = I \alpha$
m Mas	ss / Moment of	Inertia	$I = \sum_{i} m_{i} R_{i}^{2}$
$K = \frac{m}{2}v^2$	Kinetic Energ	IУ	$K = \frac{I}{2}\omega^2$

$\sum_{\Delta t} \tau = \frac{\Delta L}{\Delta t} \text{if } \Sigma \tau = 0, \text{ then } 0 = \frac{\Delta L}{\Delta t} \Leftrightarrow L = \text{const.}$			
The angular momentum of a system remains			
constant (is conserved) if the net external torque			
acting on the system is zero.			
$= \Delta \vec{P} \qquad \vec{F} = 0$			
$F = \frac{1}{\Delta t}$ Linear momentum is conserved in absence of an applied force.			
(translational invariance of physical laws)			
$\Lambda \vec{L}$ $\vec{\tau} = 0$			
$\vec{\tau} = \frac{\Delta t}{\Delta t}$ Angular momentum is conserved in absence of an applied torque.			
(rotational invariance of physical laws)			

 $\omega_2 = 0.546 \ rad / s.$

