

Goals for Chapter 8

- To study angular velocity and angular acceleration.
- To examine rotation with constant angular acceleration.
- To understand the relationship between linear and angular quantities.
- To determine the kinetic energy of rotation and the moment of inertia.
- To study rotation about a moving axis.

Rotational Motion	Quantity	Linear Motion
θ	Displacement	x
ω_0	Initial velocity	v_0
ω	Final velocity	υ
α	Acceleration	a
t	Time	t

Example: Rotation of a Compact DiscA compact disc (CD) rotates at high speed while a laser reads data
encoded in a spiral pattern. The disk has radius R = 6.0 cm. When
data are being read, it spins at 7200 rev/min.What is the CD's angular velocity
$$\omega$$
 in radians per
second ? How much time is required for it to rotate
through 90° ? If it starts from rest and reaches full
speed in 4.0 s, what is its average angular acceleration? $\omega = \frac{\Delta \theta}{\Delta t}$ $\omega = \frac{7200 \text{ rev} 2 \pi \text{ rad}}{60 \text{ s} \text{ rev}} = 754 \frac{\text{rad}}{\text{s}}$ $\Delta t = \frac{\Delta \theta}{\omega}$ $a_{\rm t} = \frac{\Delta \theta}{2 \text{ trad}} = \frac{\pi/2 \text{ rad}}{754 \text{ rad/s}} = 2.1 \times 10^{-3} \text{ s}$ $a_{\rm av} = \frac{\Delta \omega}{\Delta t}$ $= \frac{\omega - 0}{\Delta t} = \frac{754 \text{ rad/s}}{4.0 \text{ s}} = 189 \frac{\text{rad}}{\text{s}^2}$

Table 8.1 The Equations of Kinematics for Rotational and Linear Motion			
Rotational Motion (α = constant)		Linear Motion $(a = \text{constant})$	
$\omega = \omega_0 + \alpha t$	(8.4)	$v = v_0 + at$	(2.4)
$\theta = \frac{1}{2}(\omega_0 + \omega)t$	(8.6)	$x = \frac{1}{2}(v_0 + v)t$	(2.7)
$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$	(8.7)	$x = v_0 t + \frac{1}{2}at^2$	(2.8)
$\omega^2 = \omega_0^2 + 2\alpha\theta$	(8.8)	$v^2 = v_0^2 + 2ax$	(2.9)

The Equations of Rotational Kinematics

Reasoning Strategy

1. Make a drawing.

2. Decide which directions are to be called positive (+) and negative (-).

3. Write down the values that are given for any of the five kinematic variables.

4. Verify that the information contains values for at least three of the five kinematic variables. Select the appropriate equation.

5. When the motion is divided into segments, remember that the final angular velocity of one segment is the initial velocity for the next.

6. Keep in mind that there may be two possible answers to a kinematics problem.

Rotational Motion About a Fixed Axis with <u>Constant</u> Acceleration	Linear Motion with <u>Constant</u> Acceleration
$\omega = \omega_i + \alpha t$	$\mathbf{v} = \mathbf{v}_i + \mathbf{at}$
$\Delta \theta = \omega_{\rm i} t + \frac{1}{2} \alpha t^2$	$\Delta x = v_i t + \frac{1}{2} a t^2$
$\omega^2 = \omega_i^2 + 2 \alpha \Delta \theta$	$v^2 = v_i^2 + 2a\Delta x$
$\overline{\Delta \theta = \frac{\Delta s}{r}} \qquad \omega = \frac{v}{r}$	are r from the rotation axis: $\alpha = \frac{a_{T}}{r}$

