Chapter 5
 Dynamics of Uniform Circular Motion

Goals for Chapter 5

- To understand the dynamics of circular motion.
- To study the motion of satellites in orbit as a special case of circular motion where the centripetal force is due to gravitational pull of the earth.
5.1 Uniform Circular Motion

Uniform circular motion is the motion of an object traveling at a constant speed on a circular path.

Let T be the time it takes for the object to travel once around the circle.

> speed:
$\mathrm{V}=\frac{2 \pi \mathrm{r}}{\mathrm{T}}$

Example: A tire-balancing machine

The wheel of a car has a radius of 0.29 m and it being rotated at 830 revolutions per minute (rpm) on a tirebalancing machine. Determine the speed at which the outer edge of the wheel is moving.

$$
\frac{1}{830 \text { revolutions } / \mathrm{min}}=1.2 \times 10^{-3} \mathrm{~min} / \text { revolution }
$$

$$
\mathrm{T}=1.2 \times 10^{-3} \mathrm{~min}=0.072 \mathrm{~s}
$$

$$
\mathrm{v}=\frac{2 \pi \mathrm{r}}{\mathrm{~T}}=\frac{2 \pi(0.29 \mathrm{~m})}{0.072 \mathrm{~s}}=25 \mathrm{~m} / \mathrm{s}
$$

5.3 Centripetal Force

Thus, in uniform circular motion there must be a net force to produce the centripetal acceleration.

The centripetal force is the name given to the net force required to keep an object moving on a circular path.

The direction of the centripetal force always points toward the center of the circle and continually changes direction as the object moves.

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{ma}_{\mathrm{c}}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}}
$$

Is Orlando a good inertial reference frame?

- Is Orlando accelerating ?
- YES! Orlando is on earth.

The earth is rotating.

- What is the centripetal acceleration of Orlande?

$$
T=1 \text { day }=8.64 \times 10^{4} \mathrm{sec},
$$

$$
R \sim R_{E}=6.4 \times 10^{6} \text { Meter } .
$$

$$
\mathbf{v}=\frac{2 \pi \mathrm{R}}{\mathrm{~T}} \quad \mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{1}{\mathrm{R}}\left(\frac{2 \pi \mathrm{R}}{\mathrm{~T}}\right)^{2}=\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2} \mathrm{R}
$$

- Plug this in: $a=.034 \mathrm{~m} / \mathrm{s}^{2} \quad(\sim 1 / 300 \mathrm{~g})$
- Close enough to 0 that we will ignore it.
- Orlando is a pretty good inertial reference frame.

5.3 Centripetal Force
 Recall Newton's Second Law

When a net external force acts on an object of mass m, the acceleration that results is directly proportional to the net force and has a magnitude that is inversely proportional to the mass. The direction of the acceleration is the same as the direction of the net force.

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \quad \sum \overrightarrow{\mathbf{F}}=\mathrm{m} \overrightarrow{\mathbf{a}}
$$

Example: The effect of speed on centripetal force

The model airplane has a mass of $0.90 \mathbf{k g}$ and moves at constant speed on a circle that is parallel to the ground. The path of the airplane and the guideline lie in the same horizontal plane because the weight of the plane is balanced by the lift generated by its wings. Find the tension in the 17 m guideline for a speed of $19 \mathrm{~m} / \mathrm{s}$.

Two cars on a curving road

- A small car with mass m and a large car with mass 2 m drive around a highway curve of radius R with the same speed v. As they travel around the curve, what is their acceleration?
- (a) equal.
- (b) along the direction of motion.
- (c) in the ratio of 2 to 1 .
- (d) zero.

Example: Rounding a f	urve
	A car rounds a flat, unbanked curve with radius R. a) If the coefficient of static friction between tires and road is μ_{s}, derive an expression for the maximum speed $v_{\text {max }}$ at which the driver can take the curve without sliding. b) What is $\mathbf{v}_{\text {max }}$ for $R=250 \mathrm{~m}$ and $\mu_{\mathrm{s}}=0.90$? $\begin{aligned} & \mu_{\mathrm{s}} \mathrm{mg}=\mathrm{m} \frac{\mathrm{v}_{\max }^{2}}{\mathrm{R}} \\ & \mathrm{v}_{\max }=\sqrt{\mu_{\mathrm{s}} \mathrm{gR}} \end{aligned}$ $3 \mathrm{~m} / \mathrm{s}^{2} \cdot 250 \mathrm{~m}=47 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{N}} \sin \theta=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}} \\
& \mathrm{~F}_{\mathrm{N}} \cos \theta=\mathrm{mg}
\end{aligned} \quad \square \tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}
$$

| Rounding a banked curve - Daytona speedway |
| :--- | :--- | | The turns at the Daytona |
| :--- |
| International Speedway have a |
| maximum radius of 316 m and are |
| steely banked at 31 degrees. |
| Suppose these turns were |
| frictionless. As what speed would |
| the cars have to travel around them? |

Example: Orbital speed of the Hubble space telescope

Determine the speed of the Hubble Space Telescope
orbiting at a height of 598 km above the earth's surface.
$\mathrm{v}=\sqrt{\frac{\mathrm{Gm}_{\mathrm{E}}}{\mathrm{r}}}$

\[\)| $\mathrm{v}=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{6.38 \times 10^{6} \mathrm{~m}+598 \times 10^{3} \mathrm{~m}}}$ |
| ---: |
| $=7.56 \times 10^{3} \mathrm{~m} / \mathrm{s} \quad(16,900 \mathrm{mi} / \mathrm{h})$ |

\]

5.5 Satellite in circular orbits
$\sum \bar{F}=m \vec{a}$
$\frac{\mathrm{Gm}_{\mathrm{s}} \mathrm{m}_{\mathrm{E}}}{\mathrm{r}^{2}}=\frac{\mathrm{m}_{\mathrm{s}} \mathrm{v}^{2}}{\mathrm{r}}$

Larger period T corresponds to larger orbit

$$
\begin{gathered}
\mathrm{r}^{3 / 2}=\mathrm{T} \frac{\sqrt{\mathrm{Gm}_{\mathrm{E}}}}{2 \pi} \Longrightarrow \mathrm{r}=\left(\frac{\mathrm{T}}{2 \pi}\right)^{2 / 3}\left(\mathrm{G} \mathrm{~m}_{\mathrm{E}}\right)^{1 / 3} \\
\mathrm{~T}=24 \text { hours }=86400 \mathrm{~s} \\
\mathrm{r}=\left(\frac{8.64 \times 10^{4} \mathrm{~s}}{2 \pi}\right)^{2 / 3}\left(6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}} 5.98 \times 10^{24} \mathrm{~kg}\right)^{1 / 3} \\
\begin{array}{r}
\mathrm{r}=4.23 \times 10^{7} \mathrm{~m} \quad \\
\text { since earth's radius is } \\
\mathrm{H}=\mathrm{r}-\mathrm{R}_{\mathrm{E}}=6.38 \times 10^{6} \mathrm{~m} \\
\quad=3.59 \times 10^{7} \mathrm{~m}=35900 \mathrm{~km}
\end{array}
\end{gathered}
$$

Acceleration in uniform circular motion

- Uniform circular motion results in acceleration:

$$
\text { - magnitude: } \quad a_{c}=v^{2} / R
$$

$$
\text { - direction: } \quad-\mathrm{R} \quad \text { (towards center of circle) }
$$

$$
\begin{aligned}
& \text { Example: Artificial Gravity } \\
& \text { At what speed must the surfa } \\
& \text { rotate so that the astronaut ex } \\
& \text { equal to his weight on earth? } \\
& \qquad \begin{array}{c}
\mathrm{F}_{\mathrm{c}}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}}=\mathrm{mg} \\
\mathrm{~V}=\sqrt{\mathrm{rg}} \\
=\sqrt{(1700 \mathrm{~m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
=129 \mathrm{~m} / \mathrm{s}
\end{array} \\
& \text { ? }
\end{aligned}
$$

At what speed must the surface of the space station rotate so that the astronaut experiences a push on his feet equal to his weight on earth? The radius is 1700 m .

Example: Skiing over a bump

- $\mathrm{mv}^{2} / \mathbf{R}=\mathbf{m g}-\mathbf{N}$
- For $\mathbf{N}=0: \quad \mathrm{V}=\sqrt{\mathrm{Rg}}$

$$
\mathrm{V}=\sqrt{\mathrm{Rg}}
$$

Example 16, Centripetal force
Ball A is attached to one end of a rigid massless rod, while an identical ball B is attached to the center of the rod, as shown. Each ball has a mass of 0.5 kg , and the length of each half of the rod is $L=0.4 \mathrm{~m}$. Each ball is in uniform circular motion. Ball A travel at a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$. Find the tension in each half of the rod.

$$
\overbrace{R-t-t-}^{8}
$$

$$
T_{A}=\frac{m v_{A}^{2}}{2 L}=15.6 \mathrm{~N}
$$

$$
\underbrace{r_{\Delta}-\hat{S}}_{-}
$$

(

$$
T_{B}-T_{A}=\frac{m v_{B}^{2}}{L}=7.8
$$

$$
\overbrace{L=1}^{T_{0}}
$$

$$
T_{B}=23.4 \mathrm{~N}
$$

