Chapter 3 Kinematics in two dimensions

Goals for Chapter 3

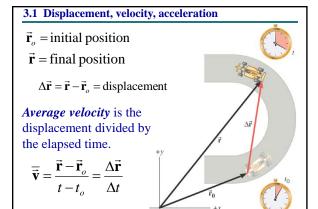
- to study position, velocity, and acceleration vectors in two dimensions
- to understand how displacement, velocity, and acceleration are applied in two dimensional motion
- •to study two-dimensional motion as it occurs in the motion of projectiles
- •to study the concept of relative motion

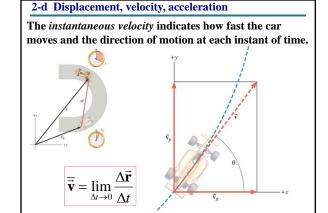
Most important concept in two-dimensional motion

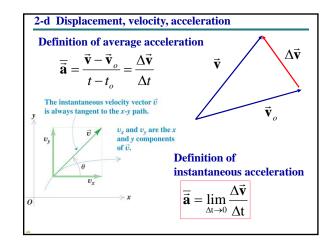
- two-dimensional motion can be decomposed into motion in x-direction and motion in y-direction
 - "x" and "y" components of motion are independent
 - · Person on a cart throws ball vertically upwards
 - Seen from two different frames of reference

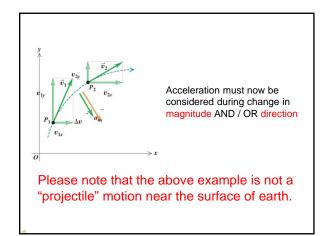
Reference frame on moving cart

Reference frame on the ground









Equations of kinematics for constant acceleration

Variables related

Equation a = const

velocity, time, acceleration

$$v = v_o + at$$

position, velocity, time

$$x = \frac{1}{2} (v_o + v) t$$

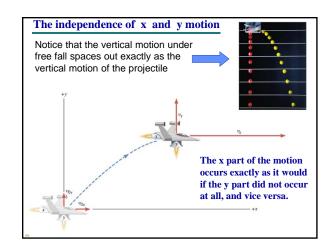
initial position $x_0 = 0$

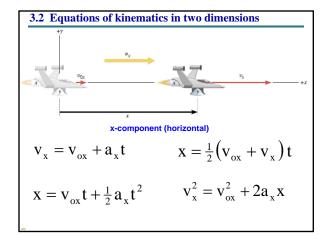
velocity, position, acceleration

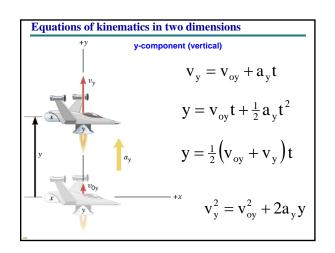
$$v^2 = v_o^2 + 2ax$$

position, time, acceleration

$$x = v_o t + \frac{1}{2}at^2$$



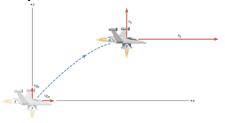




Example: A moving spacecraft

In the x direction, the spacecraft has an initial velocity component of +22 m/s and an acceleration of +24 m/s². In the y direction, the analogous quantities are +14 m/s and an acceleration of +12 m/s².

Find (a) x and v_x , (b) y and v_y , and (c) the final velocity of the spacecraft at time 7.0 s.



Example: A moving spacecraft

In the x direction, the spacecraft has an initial velocity component of +22 m/s and an acceleration of +24 m/s². In the y direction, the analogous quantities are +14 m/s and an acceleration of +12 m/s².

Find (a) x and v_x , (b) y and v_y , and (c) the final velocity of the spacecraft at time 7.0 s.

?	a_x +24.0 m/s ²	V _x ?	V _{ox} +22 m/s	<i>t</i> 7.0 s
<i>y</i> ?	$a_{\rm y}$ +12.0 m/s ²	V _y ?	V _{oy} +14 m/s	<i>t</i> 7.0 s

Example: A moving spacecraft

х	a_x	V _x	V _{ox}	t
?	+24.0 m/s ²	?	+22 m/s	7.0 s

$$x = v_{ox}t + \frac{1}{2}a_xt^2$$
= $(22 \text{ m/s})(7.0 \text{ s}) + \frac{1}{2}(24 \text{ m/s}^2)(7.0 \text{ s})^2 = +740 \text{ m}$

$$v_x = v_{ox} + a_xt$$
= $(22 \text{ m/s}) + (24 \text{ m/s}^2)(7.0 \text{ s}) = +190 \text{ m/s}$

Example: A moving spacecraft

у	a_{y}	v_y	v _{oy}	t
?	+12.0 m/s ²	?	+14 m/s	7.0 s

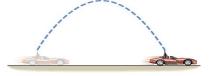
$$y = v_{oy}t + \frac{1}{2}a_yt^2$$
= $(14 \text{ m/s})(7.0 \text{ s}) + \frac{1}{2}(12 \text{ m/s}^2)(7.0 \text{ s})^2 = +390 \text{ m}$

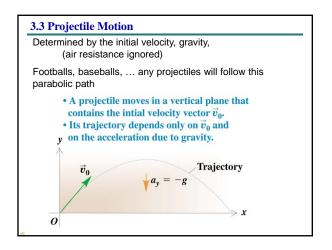
$$v_y = v_{oy} + a_yt$$
= $(14 \text{ m/s}) + (12 \text{ m/s}^2)(7.0 \text{ s}) = +98 \text{ m/s}$

Example: A moving spacecraft $v_y = 98 \text{ m/s}$ $v = \sqrt{(190 \text{ m/s})^2 + (98 \text{ m/s})^2}$ $v = \sqrt{(190 \text{ m/s})^2 + (98 \text{ m/s})^2}$ v = 210 m/s $v_y = 98 \text{ m/s}$ $v_y = 98 \text{ m/s}$ $v_y = 98 \text{ m/s}$ $v_y = 98 \text{ m/s}$

3.3 Projectile motion: Conceptual example

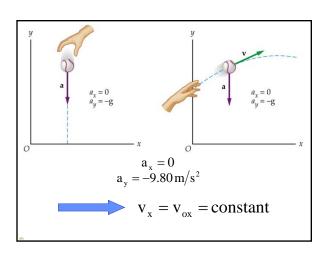
Suppose you are driving a convertible with the top down. The car is moving to the right at constant velocity. You point a rifle straight up into the air and fire it. In the absence of air resistance, where would the bullet land – behind you, aheadof you, or in the barrel of the rifle?

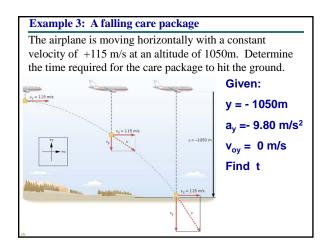


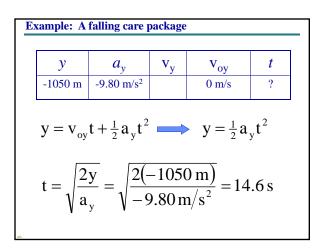


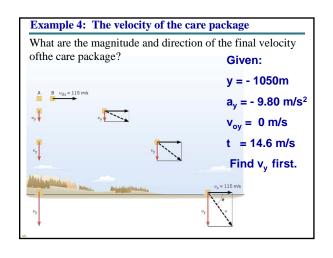
In studying projectile motion we make the following assumptions:

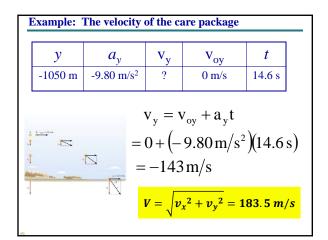
- 1. Air resistance is ignored.
- 2. The acceleration of gravity is constant, downward, and has a magnitude equal to $g = 9.8 \text{ m/s}^2$.
- 3. The Earth's rotation is ignored.
- 4. The Earth's curvature is ignored.

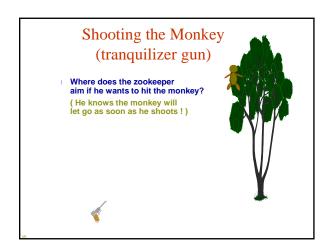


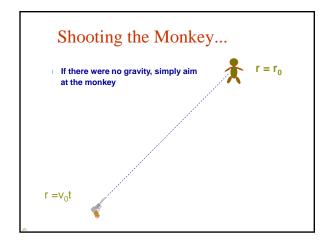


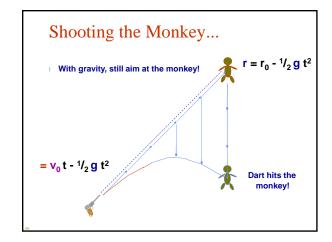


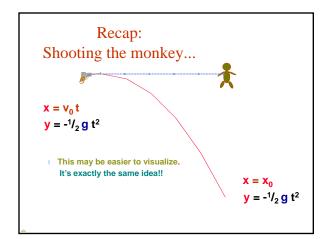


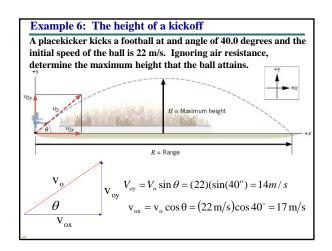


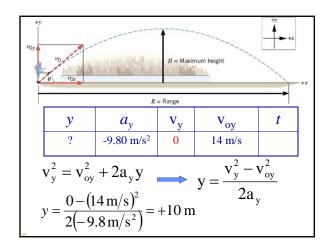


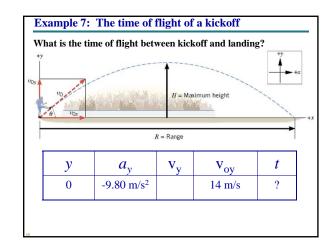




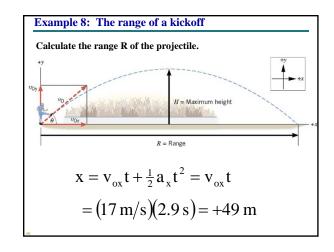


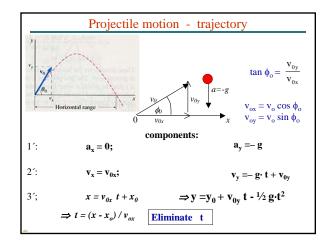


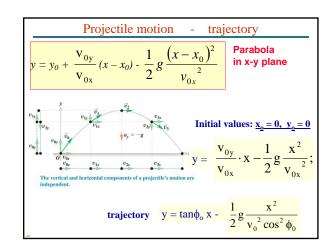




-9.80 m/s^2 $y = v$	$_{\rm ov}$ t + $\frac{1}{2}$	$\frac{14 \text{ m/s}}{2 a_v t^2}$?
y = v	$_{\rm ov}t+\frac{1}{2}$	$\frac{1}{2}a_{v}t^{2}$	
	$+\frac{1}{2}(-9)$		t^2
` ' '	2 (, ,	
= 2(14 m/s)	s)+(-	9.80 m/s ²	Jt
t =	= 2.9 s	S	
	$= 2(14 \mathrm{m}/$	= 2(14 m/s) + (-	$= (14 \text{ m/s})t + \frac{1}{2}(-9.80 \text{ m/s}^2)t$ $= 2(14 \text{ m/s}) + (-9.80 \text{ m/s}^2)t$ $t = 2.9 \text{ s}$



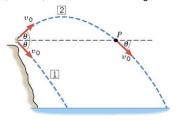


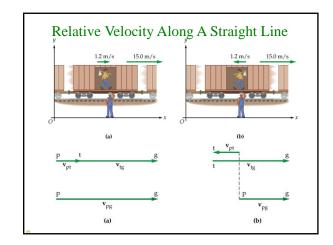


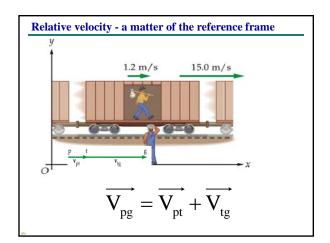
3.3 Projectile Motion

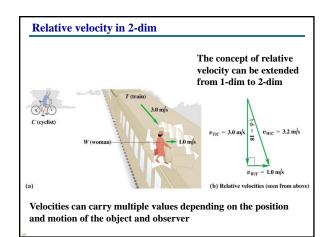
Conceptual Example 10 Two Ways to Throw a Stone

From the top of a cliff, a person throws two stones. The stones have identical initial speeds, but stone 1 is thrown downward at some angle above the horizontal and stone 2 is thrown at the same angle below the horizontal. Neglecting air resistance, which stone, if either, strikes the water with greater velocity?









Relative velocity

$$\vec{V}_{AC} = \vec{V}_{AB} + \vec{V}_{BC}$$

 \overrightarrow{V}_{AC} Velocity of A relative to C

 $ec{V}_{AB}$ Velocity of A relative to B

 $\overrightarrow{V}_{\mathit{BC}}$ Velocity of B relative to C

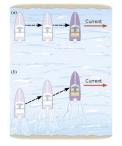
$$\vec{V}_{BC} = -\vec{V}_{CB}$$

Example: Crossing a river

A boat is crossing a river that is 1800m wide. The velocity of the boat relative to the water is 4.0m/s directed perpendicular to the current. The velocity of the water relative to the shore is 2.0m/s.

(a) What is the velocity of the boat relative to the shore?

(b) How long does it take for the boat to cross the river?



$$\vec{\mathbf{v}}_{BS} = \vec{\mathbf{v}}_{BW} + \vec{\mathbf{v}}_{WS}$$

$$\theta = \tan^{-1} \left(\frac{4.0}{2.0} \right) = 63^{\circ}$$

$$\mathbf{v}_{BS} = \sqrt{\mathbf{v}_{BW}^{2} + \mathbf{v}_{WS}^{2}}$$

$$= \sqrt{(4.0 \,\text{m/s})^{2} + (2.0 \,\text{m/s})^{2}}$$

$$= 4.5 \,\text{m/s}$$

$$t = \frac{1800 \,\text{m}}{4.0 \,\text{m/s}} = 450 \,\text{s}$$

Example: An airplane in a crosswind

The compass of an airplane indicates that it is headed due north, and the airspeed indicator shows that the plane is moving through the air at $240 \ km / h$. If there is a wind of $100 \ km / h$ from west to east, what is the velocity of the aircraft relative to the earth?

$$\vec{V}_{PE} = \vec{V}_{PA} + \vec{V}_{AE}$$

$$V_{PE} = |\vec{V}_{PE}| = \sqrt{(240)^2 + (100)^2}$$

$$= 260km/h$$

$$\alpha = \tan^{-1}(\frac{100}{240}) = 23^\circ$$

