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Abstract 

We present a theoretical analysis of a two-photon micromaser and investigate the statistical properties of the radiation. 
We analyze both vacuum as well as non-vacuum trapped states that follow from the theory. Non-vaccum trapped states 

have not been found in previous theories of the two-photon micromaser. We explore how photon number states can be 
generated in the limit of large flux of atoms in the cavity. c 1998 Elsevier Science B.V. All rights reserved. 
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Single Rydberg atoms in high-Q microcavities 
are known to produce one as well as two-photon 
maser action [1,2]. There is considerable current 
interest in determining the statistical properties of 
the maser radiation. The one-photon micromaser is 
characterized by sub-Poissonian photon number 
distribution and trapped photon states [3]. There is 
also the interesting possibility of a trapped state 

developing into a photon number state [4] or 
a Fock state, one containing a definite number of 
photons in a mode. Number states are expected to 

be of considerable importance in quantum in- 
formation theory. While such states may not yet be 
realizable, there is a great deal of interest in deter- 
mining if they can be generated in some limits. We 
present here a theory that demonstrates the exis- 
tance of trapped states and how photon number 
states can be generated in a two-photon micromaser. 

A two-photon micromaser is a device in which 
suitable three-level Rydberg atoms of fixed velocity 
enter a cavity and undergo atom-cavity interaction 
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emitting two photons. The flux of atoms is such 
that only one atom is in the cavity at any time. 

Consider a three-level atom whose states, denoted 
by II), 12), and 13), interacts with a single-mode 
cavity radiation of frequency o. The ‘*elimination” 
of the middle level leads to an effective two-level 
atom interacting via two-photon processes. There 
are a number of ways of bringing this about. One 

method to obtain the desired effective two-level 
atom is to use an unitary transformation [5,6]. In 
this paper, we consider the atom-field dynamics 
governed by the unitarily transformed Hamiltonian 

to analyze the statistics of the radiation of the two- 
photon maser. 

The effective two-level Hamiltonian, using the 
method of the unitary transformation is 

+ hrpll + hi(a3,a2 + a,,ut2), (1) 

where cij (i,j = 1,3) are spin-type opearators and u, 
and at, respectively, are annihilation and creation 
operators of the radiation mode. Expressions for ~1, 
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q, EL, E,,, and N can be found by the methods of Ref. 
[5,6]. The Hamiltonian describes atom-field inter- 

actions within the cavity. Following the method of 
Filipowicz et al. [7], we obtain the following recur- 

sion relation for the steady-state photon number 
probability: 

P, = 

x sin’[D {J%ZZ - C }] 1 P,_ , 

- C )I Pn-2. 

The various parameters are given by 

‘4=nb, 
4R 1 

&, + 1 
B=-- 

;’ &,+I’ 

(2) 

(3) 

where, nb is the average number of thermal 
photons, y is the cavity damping rate, A the detun- 
ing, and g the coupling constant. Also, R is the flux 
rate of atoms into the cavity and z is the time the 
atom spends in the cavity. The statistics of the 
radiation is given by the average number of photo- 
ns, (n), and the normalized variance, g. For 0 < 1, 
the distribution is sub-Poissonian while it is Pois- 

sonian if r~ = 1. If G > 1, the distribution is said to 
be super-Poissonian. (n) and (T are numerically 
evaluated from Eq. (2). Our analysis shows sub- 
Poissonian behavior as well as trapping states in 
the photon distribution. 

Trapping states occur at sufficiently low temper- 
atures, and at particular values of rg and A/rig, such 
that (N) stabilizes and additional photons cannot 
be added to the mode. This means that if the system 
is trapped at a photon number k, then P, = 0 for 
n 3 k, but P, # 0 for n < k. The simplest possibility 
is trapping in the vaccum or n = 0 state, already 
discussed for the two-photon micromaser [S]. 
From Eq. (2) it follows that n = 0 is a trapping state 
provided one satisfies the condition 

{JSZ-C}D=jrr, (4) 

where, j is an integer. The above-condition becomes 
identical to that obtained in Ref. [S] if we set the 
detuning A = 0, i.e., C = 0. Fig. 1 is a plot of(n) vs. 

D/n for B = SO/(1 + nb), and C = 1. We consider 
three different cavity temperatures represented by 

fib = 0, lo- 3, and lo- ‘. Vacuum trapping states are 
indicated by the dips in (n) which occur at integer 
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Fig. 1. Plot of (II) versus D/n for B = 80/( 1 + n,,) and C = 1. 
The minima, denoting vacuum trapping states, occur for integer 

values of D/n as indicated by Eq. (4). The two minima when 

3 < D/K < 4 are not known trapping states. The three graphs, 

corresponding to the values ?zb = 0, 10m3, and 10 ~‘. indicate 

cavity temperature dependence of (n). 
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values of D/IT when condition given by Eq. (4) is 
satisfied. As the cavity temperature, given by nb, is 
increased the trapping states disappear as expected. 
It is interesting that the minima for 3 < D/n < 4, 
which do not represent known trapped states, are 
rather insensitive to such temperature changes, ex- 
cept when the value of nh is made quite large, of the 
order of 1. 

We now discuss the existance of non-vaccum 
trapping states, a possibility which is non-existant 

in the theory of the two-photon micromaser con- 
sidered in Ref. [S]. A photon state II = k # 0 will be 
a trapping state if we simultaneously satisfy the 

conditions: 

(,C’+2k+ 1 -C) D=,jn, (54 

(V C’ + 2k - 1 - C) D = /WC, (5b) 

where. ,j > 1~ (1% and ,j are positive integers) and 
k > 3. There are several possibilities by which trap- 

ping states can be realised. We make a particular 
choice, i.e., ,j = k + 1 and 11~ = k. In this case we 
can easily obtain C = (2k’ - 1)/2J(k* + k) and 
D = xvi(k2 + k). Hence, k would denote a par- 

ametrization for rg and A/hg. Fig. 2 is a plot of(n) 
vs. k for B = 200/(1 + nh) and three values of 
n,, = 0. lo-” and, lo-“. The non-vaccum trapping 
states are indicated by dips in (1%) at integer values 
of k. We notice an interesting feature of the theory, 
a phase-transition like behavior at k z 6. Below the 
transition the system admits trapping as well as 
non-trapping states but above it the distinction 

between the two disappears, similar to a first-order 
phase transition. This behavior is maintained for 

higher values of the atomic flux, B, although the 
transition occurs at higher values of k. We also note 
that the trapping states disappear with increasing 

temperature. The average photon number (n), for 
higher values of k, approaches saturation obeying 
the inequality (77) 6 B/2. Also, below and above 
the transition the photon statistics is sub-Pois- 
sonian while at the transition the statistics is 
super-Poissonian as is found by evaluating the nor- 

malized variance (T. To our knowledge, a transition 
of the kind just discussed has not been previously 
seen in micromasers. 

At higher values of B, the trapping state can 
become a photon number state. In the limit of large 
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Fig. 2. Plot of 01) indicating. for B = NO81 I + !I~). (‘ = 
(2k’ - 1)2,,,(1\’ + h). and D = n[t (L’ + L). non-vaccum trup- 

ping states and phase transition-like behavior. The three graphs 

correspond to rzh = 0. 10 ‘, and 10~ ‘. respectively. Phase 

transition-like behavior disappears as temperature is gradually 

increased. 

B, we derive. 

\ 

p,+ PO n B(n+l) 2 

,,= i (2n + 1)2 sm 

XD iv /c* + 2n + 1 - C) . (6) 

where, s = 0,1,2, . . , k - 2. The normalization con- 
dition of P,, implies that for B + zc , PO --t 1.; 
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0(Bk-2). Consequently, only two probabilities, 
Pk_ 1 and Pk_ 2 survive, while all others go to zero 
as B -+ cc. The dispersion in the photon number 
also vanishes, if, in addition, k is large. The reduc- 
tion in the number of states to one and the limit 
r~ + 0 are indications of the approach to a photon 
number state. 
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