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Abstract. The measurement of diffusion coefficients in today’s materials is complicated by the 

down scaling of the studied structures (nanometric effects in thin films, nano-crystalline layers, etc.) 

and by the complex production process conditions of industrial samples or structures (temperature 

variations, complex solute and point defect distributions, stress gradients, etc.). Often diffusion 

measurements have to be performed in samples for which initial experimental conditions do not 

offer the possibility of using conventional diffusion analytical solutions. Furthermore, phenomena 

involved with diffusion are sometimes so numerous and complex (stress, matrix composition 

inhomogeneities, time dependence of point defect generation sources, electrical effects, clustering 

effects, etc…) that the use of analytical solutions to solve the observed diffusion behavior is 

difficult. However, simulations can be of use in these cases. They are time consuming compared to 

the use of analytical solutions, but are more flexible regarding initial conditions and problem 

complexity. The use of simulations in order to model physical phenomena is quite common 

nowadays, and highly complex models have been developed. However, two types of simulations 

have to be considered: i) simulations aiming to understand and predict phenomena, and ii) 

simulations for measurement purposes, aiming to extract the (average) value of a physical parameter 

from experimental data. These two cases have different constrains. In the second case, that is the 

subject of this article, one of the most important stress is that the simulation has to precisely scale 

the experiment (sample size, experiment duration, etc.), sometimes preventing the measurement due 

to computational time consumption. Furthermore, the simpler the model (small number of 

parameters) used in the simulation, the more relevant the measurement (minimum error). In this 

paper, examples of recent works using two- and three-dimensional finite element simulations for 

diffusion coefficient measurements in thin polycrystalline films and nano-crystalline layers are 

presented. The possible use of simulations for diffusion coefficient measurements considering GB 

migration, GB segregation, or triple junctions is also discussed. 

Introduction 

Atomic diffusion in solids is an important phenomenon as it controls kinetics of material evolutions 

towards several types of equilibrium states (phase formation, bulk composition, surface and 

interface segregation…). It takes place in many industrial processes related to structural and 

functional material production, especially in metallurgy and microelectronic fabrication processes. 

The measurement of diffusion coefficients allows to understand and to predict atom transport in 

solids. Often, diffusion coefficients are extracted from experimental one-dimensional (1D) 

composition profiles measured after controlled (temperature−T−, time−t− and atmosphere) thermal 

treatments, using analytical solutions [1] or numerical simulations [2] of the diffusion process, 

taking into account the sample geometry and experimental conditions. Analytical diffusion solutions 

have the benefit to procure exact results in a minimum of time. However, they are restricted to given 
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initial conditions and given boundary conditions, and they are usually obtained for reduced 

complexity diffusion problems. Their use is mainly limited by experimental conditions that may not 

match available analytical models. Numerical simulations are time consuming and include 

numerical errors. They are principally limited by computer performances (speed and memory size). 

However, they can be used for highly complex problems (several interrelated physical models), for a 

wide kind of sample geometry (1D, 2D and 3D) and experimental conditions, and if the model is 

carefully designed (physics laws, geometry, boundary conditions, discretization), the numerical 

error can be kept at a negligible level. Because industrial process conditions are often far from 

equilibrium, numerical simulations are extensively used in industry. They allow a significant gain of 

time and an important decrease of production costs. For example, the cost reduction of 

microelectronic device production associated to modeling and simulation was evaluated to be up to 

40% by the International Technology Roadmap for Semiconductors ITRS in 2007 [3]. Because of 

industrial needs, powerful commercial softwares designed for finite element simulations (FES) of a 

wide range of engineering and scientific problems are available (Flux-Expert, Sentaurus, Ansys, 

Comsol and others). A lot of companies have simulation teams that use these softwares in the 

research, development and production fields. It is important to note that to be used for industry 

applications, simulations have to fulfill several requirements: i) they should reproduce experimental 

condition variations during the process (stress, temperature, atmosphere…), ii) at the experimental 

scale (size −m, cm, µm, nm, and time −seconds, minutes, hours), iii) the results must be 

quantitative, iv) they should be obtained in a minimum time scale, and v) the simulations’ support 

(software) should be as friendly as possible to use, allowing frequent modifications performed by 

different users. Impurity diffusion coefficient measurements, as well as diffusion simulations in 

mono-crystalline Si (mono-Si) are widely performed in one- and two-dimensions using FES [4]. 

However, despite intensive FES of mass transport and of grain boundary motion in poly-crystals [5-

10], diffusion coefficients in poly-crystals are mainly measured in strict kinetic regime conditions 

(A, B or C) using analytical solutions (Fisher’s model for the regime B, for example) [1]. Recently, 

Gryaznov et al. (2008) [11] have used FES (software Flux-Expert) with a modified-Fisher geometry 

to study impurity diffusion in poly-crystalline ionic compounds. They performed two-dimensional 

simulations and converted the 2D results in 1D profiles in order to compare the effects of the model 

geometry upon experimental profiles, but no diffusion coefficients were measured. Fournier Dit 

Chabert et al. (2007) [12] have performed 1D FES of surface and grain boundary (GB) segregation 

using the software Comsol Multiphysics. Their results were in good agreement with the McLean 

analytical model. Using their simulations to fit Auger electron spectroscopy measurements, they 

were able to measure the diffusion coefficient of S in a Ni-based(001) superalloy, and thus, were 

able to predict S segregation in the Ni superalloy GBs versus grain size. 

  

Figure 1. 1D experimental SIMS profile before annealing (a), and the corresponding 2D initial 

distribution defined in the 2D model (b). 
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Finite element simulations and 2D Fisher’s geometry 

Benefits. Few years ago (2007) [13], we showed that FES can be used to measure simultaneously 

diffusion coefficients in poly-crystalline thin films’ grains and GBs, for experiments in the kinetic 

regime B, using the 2D Fisher geometry. This is a significant benefit compared to the usual 

procedure using analytical type B regime solutions that consist in measuring the GB diffusion 

coefficient (Dgb) in poly-crystals once the grain (lattice) diffusion coefficient (Dg) has been 

measured in mono-crystalline samples [1]. Actually, it should be noted that 2D FES do not need to 

know the exact kinetic regime during experiments, and can simulate diffusion between the usually 

considered regimes [14]. The FES-based method consists in using the initial 1D experimental 

profile to define the initial atom distribution in the 2D geometry, and once the 2D calculations has 

been performed (annealing simulations), to convert the final 2D distribution in an 1D profile, and to 

compare it with the experimental final profile. Fig. 1 presents the Ge profile measured by secondary 

ion mass spectrometry (SIMS) in a 500 nm-thick polycrystalline Si (poly-Si) layer before annealing, 

and its corresponding 2D Ge distribution in the 2D geometry made of half of a grain (20 nm) and 

half of a GB (0.25 nm) along the y axis (Fisher-type geometry [15]). The impurity distribution 

before annealing is considered to be identical in the grain and in the GB. Fig. 2 shows the 

simulation results (2D and 1D) corresponding to a thermal treatment at 900 °C for 0.5 hour, and its 

comparison with the experimental SIMS profile. 

 

 
 

Figure 2. 2D simulation results (a), and the corresponding 1D distribution profile compared to the 

experimental SIMS profile measured after annealing at 900 °C for 0.5 hour (b). 

 

Consistent with the Fisher model [15], Dg and Dgb were considered to be constant during annealing 

(Fickian diffusion [1,16]). After each simulation, the 2D distribution is averaged along the x axis 

(layer thickness) in order to obtain a 1D profile similar to the profiles measured experimentally (fig. 

2). Depending on the agreement between simulated and experimental 1D profiles, Dg and Dgb are 

changed in order to get the best fit between simulations and experiments. Because Dg and Dgb have 

different effects on the 1D profile [13], only one set of these coefficients corresponds to a single 

profile, with an error generally between 5 and 20%. This error varies with the difference in total 

dose of atoms between the profiles measured before and after annealing, due to the intrinsic 

inaccuracies of the methods used to measure the profiles [17]. The measurement error of the 

coefficients Dg and Dgb can be defined independently, considering the several Dg−Dgb pairs 

corresponding to fits that are not the best, but that are still acceptable considering the inaccuracy of 

profile measurements. 
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Figure 3. TEM cross-section image of a Ni2Si layer implanted with As atoms (a), and As lattice 

and GB diffusivities measured in this layer using 2D FES [18-19], compared to Ni diffusion in 

Ni2Si [29] (b). 

 

One of the FES benefits is to be able to use different models than Fisher’s model, which may not 

have analytical solutions (not resolved yet or not possible to resolve analytically). As an illustration, 

we present in fig. 3 the As diffusivity measured using FES in a Ni2Si thin film exhibiting columnar 

grains [18-19]. The Ni2Si layer was encapsulated between two SiO2 thin layers (20−30 nm) 

preventing As desorption from the surface, and As diffusion in the substrate. The Ni2Si layer was 

implanted with a 5 × 10
15

 at cm
−2

 dose of As ions at 120 keV. Fig. 3a presents transmission electron 

microscopy (TEM) measurements performed on the layer, and fig. 3b shows Dg and sDgb we 

measured, s being the segregation coefficient of As in the Ni2Si GBs that we could not separate 

from the GB diffusion coefficient. It can be noted that the method described here allows to measure 

lattice diffusion coefficients at low temperatures (fig. 3b, T ≤ 700 °C), as the composition profile in 

the kinetic regime B is sensitive to very small diffusion lengths in the grains (few nanometers), 

which are usually not possible to measure in mono-crystalline samples via the same experimental 

techniques (SIMS…) [20-21].  

 

 
Figure 4. 2D model (a), 2D simulation results (b), and 1D simulation results (c) [19]. 

For these measurements, we used the flexibility of FES to define a slightly modified Fisher’s model 

that takes into account atomic diffusion at the two SiO2 /Ni2Si interfaces (fig. 4). GB and interface 

segregation were not considered in the model. As shown in fig. 4a, three diffusion coefficients were 

defined: i) Dg related to lattice diffusion in grains, ii) Dgb the GB diffusivity, and iii) Di 

66 Grain Boundary Diffusion, Stresses and Segregation

http://www.scientific.net/feedback/107825
http://www.scientific.net/feedback/107825


 

corresponding to the diffusivity at the SiO2 /Ni2Si interfaces [18-19]. Figs. 4b and 4c show an 

example of simulated As distribution obtained after annealing for 1 hour with Dg = 1.5 × 10
−16

, Dgb 

= 3.8 × 10
−12

 and Di = 1 × 10
−4

 cm
2
 s
−1

 (interface diffusion considered to be infinitively fast [18]). 

Even without interface segregation, interface boundaries can act as diffusion sources for grains, as 

shown in figs. 4b and 4c (end of the 1D profile). The possibility offered by FES to measure in-grain 

lattice diffusion in poly-crystalline layers is of great interest. For example, one application is the 

measurement of the average lattice diffusion coefficient in nano-crystalline materials. Diffusion in 

nano-grains has been poorly studied due to experimental issues. However, FES using the Fisher 

geometry allows to measure the lattice diffusion in nanometers-wide grains and to compare this 

diffusivity with lattice diffusion in mono-crystals. Fig. 5 presents the in-grain Ge lattice diffusion 

and the Ge GB diffusion measured in a 500 nm-thick poly-Si layer made of 40 nm-wide grains [22]. 

The Ge nano-lattice diffusion Dg is compared to Ge bulk diffusion Db in mono-Si [23-25] in fig. 5a, 

and the nano-GB diffusion coefficient nano-Dgb is compared to the micro-GB diffusion coefficient 

micro-Dgb measured in poly-Si made of 30 µm-wide grains [22]. 

 

 
Figure 5. (a) Ge lattice diffusion in 40 nm-wide Si grains (solid squares) compared to Ge lattice 

diffusion in mono-Si [23-25], and (b) Ge diffusion in nano-GBs (solid triangles) compared to Ge 

diffusion in micro-GBs [22]. 

 

Ge lattice diffusion was found to be one order of magnitude faster in 40 nm-wide Si grains than in 

mono-Si, with an activation energy in the nano-grains about 1 eV smaller than in mono-Si. Ge 

diffusion in nano-GB was found to be one order of magnitude faster than in micro-GB, however, 

similar activation energies were found in the two types of GBs. 

 

Grain boundary segregation. FES allow to solve diffusion problems in poly-crystals considering 

GB segregation. Fig. 6 presents FES results obtained using the Fisher geometry and considering 

McLean’s GB segregation. In this case, three parameters can be measured at given temperature: Dg 

and Dgb, as well as s the segregation coefficient. However, the effects of Dgb and s on the diffusion 

profile cannot be separated, meaning that these two parameters cannot be extracted simultaneously 

from a single profile. For example, if Dgb is measured from diffusion experiments performed in the 

kinetic regime C [14], Dg and s can be simultaneously measured from a single diffusion profile 

using FES. Fig 6a presents simulated 1D profiles obtained with t = 360 s, Dg = 5 × 10
−17

, Dgb = 5 × 

10
−13

 cm
2
 s
−1

, and s = 1, 10 or 1000. Fig. 6b presents the fit of the results presented in fig. 6a using 

the analytical solution of the problem in the case of a semi-infinite poly-crystal, which allows to 

measure the triple product sDgbδ if Dg is known (δ = 0.5 nm being the lateral size of the GB), thanks 

to the equation sDgbδ = 1.308×(Dg/t)
1/2×(−∂lnC/∂x

6/5
)
−5/3

 [1]. Without segregation (s = 1) the GB 

diffusion coefficient extracted from the analytical solution is quite close to the real value, as we 

found Dgb = 4.05 × 10
−13

 instead of 5 × 10
−13

 cm
2
 s
−1

. However, important errors upon either s or 

Defect and Diffusion Forum Vols. 309-310 67

http://www.scientific.net/feedback/107825
http://www.scientific.net/feedback/107825


 

Dgb are made if s > 1, which are principally due to the influence of atom reflection at the interface 

(thin film) that is not taken into account in the analytical model (semi-infinite film) [1]. 

 

 
Figure 6. Results of 2D FES of impurity diffusion in a poly-crystal using the Fisher geometry (40 

nm grains) with Dg = 5 × 10
−17

 and Dgb = 5 × 10
−13

 cm
2
 s
−1

, and considering that the GB segregation 

coefficient s = 1, 10 or 1000. The diffusion time was t = 360 s. (a) 1D diffusion profiles, and (b) fit 

of the simulated profiles with an analytical solution for semi-infinite poly-crystalline layers. 

 

 
Figure 7. 1D profiles obtained from 2D FES using the Fisher geometry with growing grain (from 50 

nm to 100 nm) and moving GB, with Dg = 2 × 10
−16

, Dgb = 5 × 10
−11

 cm
2
 s
−1

, and t = 3600 s: (a) for 

different fraction of growing grains and vgb = 0.014 nm s
−1

, and (b) for different grain growth rates if 

all the grains are growing. 

 

Moving grain boundaries. During annealing of poly-crystals, grains can grow and thus GBs can 

move. We usually do our best to perform diffusion experiments in conditions avoiding grain 

growth. However, diffusivities are often extracted from reactive diffusion experiments (oxide and 

silicide growth [26] for example) in order to understand phases’ growth and to predict their kinetics 

during fabrication processes. It is thus interesting, in some cases, to study atomic transport in GBs 

during grain growth, and to measure an effective diffusion coefficient. A simple model can use the 

Fisher model [15] including a lateral movement of the GB, as well as an increasing grain size versus 

time. Similar to the case of GB segregation, the model possesses three constant parameters: Dg and 

Dgb, as well as vgb the GB displacement rate (or grain growth rate). If we consider that not all the 
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grains are growing, the fraction of growing grains fgr can be a fourth parameter. Of course, all these 

parameters cannot be measured simultaneously on a single diffusion profile.  

 

However, vgb can be measured using in situ X-ray diffraction for example [27], Dg can be measured 

individually as usual [20-21], and both introduced into the model. Thus, an effective Dgb related to 

grain growth can be extracted from experiments. Fig. 7 presents 1D profiles calculated from 2D 

FES with Dg = 2 × 10
−16

, Dgb = 5 × 10
−11

 cm
2
 s
−1

, and t = 3600 s, in the case of 50 nm-wide grains 

growing up to a lateral size of 100 nm (the double of their initial size). The profiles related to 

diffusion in similar conditions but with grains of constant size of either 50 or 100 nm are also 

presented in fig. 7. If vgb = 0.014 nm s
−1

, the grains grow during the entire annealing time. If all the 

grains are growing, the diffusion profile resembles to a profile corresponding to diffusion through a 

single phase [1], and could be misinterpreted as resulting from pure lattice diffusion, or diffusion in 

the kinetic regimes A or C [14]. Fig. 7a shows the variations of the diffusion profile versus the 

fraction of growing grains if vgb = 0.014 nm s
−1

. If 1% of the grains are growing (fgr = 0.01), the 

diffusion profile is superimposed to the profile corresponding to the non-growing 50 nm-wide 

grains. The effect of grain growth is not detectable on the diffusion profile. However, if 10% of the 

grains are growing (fgr = 0.1), the grain growth effect on the profile is not negligible anymore. The 

modification may mislead the experimentalist that can interpret the first part of the profile, 

including the grain-growth related change, as resulting from lattice diffusion in grains, leading to the 

overestimation of Dg. One can note that in our simulations, the maximum depth of the first part of 

the profile is less than 20 nm, which is smaller than the critical length 5×√(Dg t) (= 42 nm in our 

case) usually considered in analytical solutions as the maximum depth on experimental profiles that 

can reach atoms diffusing in grains. Deeper in the sample, the slopes of all the profiles are identical 

to the slope of the profiles of 50 and 100 nm-wide non-growing grains (except if fgr = 1), indicating 

that the same diffusion coefficient can be extracted from the profile slopes using an analytical 

solution of the Fisher model [1]. Fig. 7b presents the variations of the diffusion profile in function 

of the grain growth rate vgb. If the grains are not growing during the entire annealing time (vgb > 

0.014 nm s
−1

), the profile looks like to result from diffusion through a poly-crystal in the kinetic 

regime B. However, it is not superimposed to either the profiles of 50 or 100 nm-wide non-growing 

grains. Similar to the case of growing grains, it exhibits a modified zone having a depth less than 20 

nm. If vgb is fast, the grains reach a lateral size of 100 nm faster, and the deep part of the profile 

tends to get superimposed to the profile related to diffusion in a poly-crystal of constant 100 nm-

wide grains. 

Finite element simulations and 3D geometry 

Description. Similar to 2D FES, simulations using a three-dimensional (3D) geometry can be used 

to simulate 1D diffusion experiments in poly-crystals. In order to minimize the calculation time, the 

symmetries of the 3D geometry is used to define the smaller volume that can be used to solve the 

diffusion problem. Fig. 8a presents the geometry used to simulate diffusion in a 500 nm-thick poly-

crystalline layer made of 40 nm-wide grains having a square shape (3D Fisher’s geometry). This 

volume contained 1/8 of the total 3D Fisher’s geometry. In the same way as for the 2D geometry, 

the experimental 1D profile measured before annealing is used to define the 3D initial profile in the 

3D geometry (fig 8a), and after the simulation, the 3D distribution is transformed in a 1D profile 

that can be compared to experimental composition profiles (fig. 8b). If the Fisher geometry is used 

in 3D, Dg and Dgb are the only parameters, and they can be measured simultaneously on single 

profiles using the same procedure as previously described for 2D models. 
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Figure 8. 3D geometry used to simulate diffusion via FES in a poly-crystalline thin film having 

square-shaped 40 nm-wide grains (a), and the resulting 1D diffusion profile compared to the 

experimental profile after annealing at 850°C for 1 hour (b). 

 

Triple junctions. The use of a 3D geometry can be of high interest in order to measure diffusion 

coefficients in triple junctions (TJs). In the 3D geometry presented in fig. 8a, both GB and TJ 

diffusion paths are taking into account in addition to in-grain lattice diffusion using the Fisher 

geometry. In this geometry, the GB corresponds to a 0.5 nm-thick plane and the TJ corresponds to a 

square pipe having a section of 0.25 nm
2
. Using this geometry, we can analyze the same Ge 

diffusion profiles (figs. 1 and 2) measured in a 500 nm-thick nano-crystalline Si layer made of 40 

nm-wide grains, which we previously studied using the 2D Fisher geometry via FES (fig. 5). Fig. 9a 

presents the SIMS profile measured after the diffusion of Ge at 850°C for 1 hour in the nano-

crystalline Si layer, with simulated profiles obtained using the 3D FES with Dg equal to the 

coefficient measured in the nano-grains using 2D FES (2D-Dg), and Dgb equal to the coefficient 

measured in poly-Si having micrometric grains (micro-Dgb) in same conditions, and with the TJ 

diffusion coefficient Dtj having a value between 1 × 10
−11

 and 1 × 10
−9

 cm
2
 s
−1

, corresponding to a 

ratio Dtj /Dgb from 5 × 10
1
 to 5 × 10

3
 in agreement with the literature [28].  

The influence of TJ diffusion in the Si nano-crystalline layer is not negligible as the final 1D 

profile is highly dependent upon the value of Dtj. Furthermore, the SIMS profile is correctly 

reproduced by the simulations if a GB diffusion similar to the one measured in micro-crystalline Si 

is used with Dtj ~ 1 × 10
−10

 cm
2
 s
−1

. If Dtj is maintained constant (= 1 × 10
−9

 cm
2
 s
−1

 for example), 

3D FES can be used to extract Dg and Dgb as previously done using the 2D geometry. In this case, 

the 3D-Dg is found identical to the 2D-Dg, while the 3D-Dgb is found smaller than the 2D-Dgb and 

close to the micro-Dgb [28]. In nano-crystalline Si, the diffusivity in GB is the same as in micro-

crystalline Si. The faster diffusion of Ge in nano-Si is due to a diffusion increase in nano-grains 

(lower vacancy formation energy) and fast diffusion in TJs [28]. Fig 9b presents the coefficients of 

diffusion measured in TJs considering that GB diffusion in nano-crystalline Si is identical with GB 

diffusion in micro-crystalline Si. We found Dtj = 5.72 × 10
4
 exp(−3.24 eV /kT) cm

2
 s
−1

 with Dtj /Dgb 

~ 4.7 × 10
2
 [28]. 
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Figure 9. Ge SIMS profile measured in nano-crystalline Si after annealing at 850°C for 1 hour (solid 

line) compared to simulated profiles using 3D FES with Dg = 1.5 × 10
−17

, Dgb = 2 × 10
−13

 and 1 × 

10
−11

 ≤ Dtj ≤ 1 × 10
−9

 cm
2
 s
−1

 (a), and the diffusion coefficients measured in this layer using 3D FES 

[28] (b). 

Summary 

The possibility to measure diffusion coefficients in poly-crystalline thin films using finite element 

simulation is discussed. It is shown that 2D FES allows to measure simultaneously the lattice and 

the GB diffusion coefficients from a single 1D experimental composition profile. The possibility to 

measure lattice diffusion in the grains of poly-crystalline layers during the diffusion kinetic regime 

B offers the opportunity to measure lattice diffusion at lower temperature than that usually used for 

experiments performed in mono-crystals, as well as to study lattice diffusion in nanometric phases 

in the case of nano-crystalline samples. 2D FES allows also to take into account GB segregation 

during diffusion experiments, and to extract effective GB diffusion coefficients in the case of 

experiments with moving GBs. 3D FES can also be performed. One of their applications is the 

ability to measure TJ diffusion coefficients and lattice diffusion in grains, if the GB diffusion 

coefficient is known. 

Acknowledgements 

The authors would like to thank Philippe Maugis (Aix-Marseille University, formerly at 

ARCELOR) and Lorenzo Ciampolini (STMicroelectronics) for interesting discussions. 

References 

[1] H. Mehrer: Diffusion in Solids (Springer-Verlag, Berlin Heidelberg, 2007). 

[2] P. Pichler: Intrinsic Point Defects, Impurities, and their Diffusion in Silicon (Springer-

Verlag/Wien New York, Austria, 2004). 

[3] http://www.itrs.net. 

[4] P. Pichler, A. Burenkov, J. Lorenz, C. Kampen, and L. Frey: Thin Solid Films Vol. 518 

(2010), p. 2478. 

[5] J.A. Sethian and J. Wilkening: J. Comput. Phys. Vol. 193 (2003), p. 275. 

[6] H.N. Ch’ng and J. Pan: J. Comput. Phys. Vol. 196 (2004), p. 724. 

[7] H.M. Mourad and K. Garikipati: Comput. Methods Appl. Mech. Engrg. Vol. 196 (2006), p. 

595. 

Defect and Diffusion Forum Vols. 309-310 71

http://www.scientific.net/feedback/107825
http://www.scientific.net/feedback/107825


 

[8] Y. Wei, F. Bower and H. Gao: J. Mech. Phys. Solids Vol. 56 (2008), p. 1460. 

[9] W. Preis and W. Sitte: Solid State Ionics Vol. 179 (2008), p. 765. 

[10] M. Pernach and M. Pietrzyk: Comput. Mater. Sci. Vol. 44 (2008), p. 783. 

[11] D. Gryaznov, J. Fleig, and J. Maier: Sol. State Sci. Vol 10 (2008), p. 754. 

[12] F. Fournier, D. Chabert, F. Tancret, F. Christien, R. Le Gall, and J.-F. Castagné : J. Mater. Sci. 

Vol. 42 (2007), p. 9765. 

[13] A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara: Diff. Def. Data Vol. 

264 (2007), p. 33. 

[14] L.G. Harrison: Trans. Faraday Soc. Vol. 57 (1961), p. 1191. 

[15] J.C. Fisher: J. Appl. Phys. Vol. 22 (1951), p. 74. 

[16] A. Fick: Phil. Mag. S. Vol. 10 (1855), p. 30. 

[17] A. Portavoce, N. Rodriguez, R. Daineche, C. Grosjean, and C. Girardeaux: Mater. Lett. Vol. 

63 (2009), p. 676. 

[18] I. Blum, A. Portavoce, D. Mangelinck, R. Daineche, K. Hoummada, J. L. Lábár, V. Carron, 

and C. Perrin: J. Appl. Phys. Vol. 104 (2008), p. 114312. 

[19] I. Blum, A. Portavoce, D. Mangelinck, R. Daineche, K. Hoummada, J.L. Lábár, V. Carron, 

and J. Bernardini: Microel. Eng. Vol. 87 (2010), p. 263. 

[20] C. E. Allen, D. L. Beke, H. Bracht, C. M. Bruff, M. B. Dutt, G. Erdélyi, P. Gas, F. M. 

d’Heurle, G. E. Murch, E. G. Seebauer, B. L. Sharma, and N. A. Stolwijk, in: Diffusion in 

Semiconductors and Non-Metallic Solids, Landolt-Börnstein-Numerical Data and Functional 

Relationships in Science and Technology, edited by D. Beke (Springer-Verlag, Berlin, 1998), 

Vol. 33. 

[21] H. Bakker, H. P. Bonzel, C. M. Bruff, M. A. Dayananda, W. Gust, J. Horváth, I. Kaur, G. V. 

Kidson, A. D. Le Claire, H. Mehrer, G. E. Murch, G. Neumann, N. Stolica, and N. A. 

Stolwijk, in: Diffusion in Solid Metals and Alloys, Landolt-Börnstein-Numerical Data and 

Functional Relationships in Science and Technology, edited by H. Mehrer (Springer-Verlag, 

Berlin, 1990), Vol. 26. 

[22] A. Portavoce, G. Chai, L. Chow, and J. Bernardini: J. Appl. Phys. Vol. 104 (2008), p. 104910. 

[23] P. Dorner, W. Gust, B. Predel, U. Roll, A. Lodding, and H. Odelius: Philos. Mag. A Vol. 49 

(1984), p. 557. 

[24] G. Hettich, H. Mehrer, and K. Maier: Inst. Phys. Conf. Ser. Vol. 46 (1979), p. 500. 

[25] N.R. Zangenberg, J. Lundsgaard Hansen, J. Fage-Pedersen, and A. Nylandsted Larsen: Phys. 

Rev. Lett. Vol. 87 (2001), p. 125901. 

[26] F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, and U. Smith: Appl. Phys. Lett. Vol. 86 

(2005), p. 041903. 

[27] A. Portavoce, D. Mangelinck, R. Simola, R. Daineche, and J. Bernardini: Defect and 

Diffusion Forum Vols. 289-292 (2009), p. 329. 

[28] A. Portavoce, L. Chow, and J. Bernardini: Appl. Phys. Lett. Vol. 96 (2010), p. 214102. 

[29] J.-C. Ciccariello, S. Poize, and P. Gas: J. Appl. Phys. Vol. 67 (1990), p. 3315. 

72 Grain Boundary Diffusion, Stresses and Segregation

http://www.scientific.net/feedback/107825
http://www.scientific.net/feedback/107825


Grain Boundary Diffusion, Stresses and Segregation 
doi:10.4028/www.scientific.net/DDF.309-310 
 
Numerical Simulation Support for Diffusion Coefficient Measurements in
Polycrystalline Thin Films 
doi:10.4028/www.scientific.net/DDF.309-310.63

http://www.scientific.net/feedback/107825
http://www.scientific.net/feedback/107825

