

Alternating-Current Circuit

- direct current (dc) current flows one way (battery)
- alternating current (ac) current oscillates
- · sinusoidal voltage source

 $V(t) = V_P \sin(\omega t)$

 $\omega = 2 \pi f$: angular frequency

 V_p : voltage amplitude

10/10/2010 PHY2054

Example: household voltage

In the U.S., standard wiring supplies 120 V at 60 Hz. Write this in sinusoidal form, assuming V(t)=0 at t=0.

This 120 V is the RMS amplitude: so $V_p = V_{rms} \sqrt{2} = 170 \text{ V}$. This 60 Hz is the frequency f: so $\omega = 2\pi f = 377 \text{ s}^{-1}$.

So $V(t) = 170 \sin(377t - \varphi_v)$.

Choose $\varphi_v = 0$ so that V(t) = 0 at t = 0: $V(t) = 170 \sin (377 t)$.

AC Circuits: Summary

Element	I ₀	Current vs. Voltage	Resistance Reactance Impedance
Resistor	$\frac{V_{0R}}{R}$	In Phase	R = R
Capacitor	ωCV_{0C}	Leads	$X_C = \frac{1}{\omega C}$
Inductor	$\frac{V_{0L}}{\omega L}$	Lags	$X_L = \omega L$

Although derived from single element circuits, these relationships hold true generally!

What is reactance?

You can think of it as a frequency-dependent resistance.

- Capacitor looks like a break

For high ω , $X_c \rightarrow 0$

- Capacitor looks like a wire ("short")

For low ω , $X_L \rightarrow 0$

- Inductor looks like a break

$$("X_R"=R)$$

Example 2: An inductor in an AC Circuit

The circuit contains a 3.60 mH inductor. The rms voltage is 25.0 V. Find the rms current in the circuit when the generaor frequency is (a) 100 Hz, (b) 5000 Hz.

(a)
$$X_L = 2\pi f L = 2\pi (100)(3.6x10^2) = 2.26 \Omega$$

$$I_{rms} = \frac{V_{rms}}{X_L} = \frac{25V}{2.26\Omega} = 11.1A$$

(b)
$$X_L = 2\pi f L = 2\pi (5000)(0.0036) = 113\Omega$$

$$I_{rms} = \frac{V_{rms}}{X_I} = \frac{25}{113} = 0.221 A$$

23.3 Circuits Containing R, C, and L

In a series RLC circuit, the total opposition to the flow is called the impedance.

$$V = I Z$$

$$V_{\rm rms} = I_{\rm rms} Z$$
 $Z = \sqrt{R^2 + (X_L - X_C)^2}$

23.3 Circuits Containing R, C, and L

